Postglacial Rebound

2021 ◽  
pp. 244-252
Keyword(s):  
2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2005 ◽  
Author(s):  
A Lambert ◽  
T S James ◽  
N Courtier ◽  
K Simon ◽  
M Schmidt ◽  
...  

2021 ◽  
Author(s):  
S Mazzotti ◽  
John Townend

We use a Bayesian analysis to determine the state of stress from focal mechanisms in ten seismic zones in central and eastern North America and compare it with regional stress inferred from borehole measurements. Comparisons of the seismologically determined azimuth of the maximum horizontal compressive stress (S HS ) with that determined from boreholes (S HB ) exhibit a bimodal pattern: In four zones, the S HS and regional S HB orientations are closely parallel, whereas in the Charlevoix, Lower St. Lawrence, and Central Virginia zones, the S HS azimuth shows a statistically significant 30°-50° clockwise rotation relative to the regional S HB azimuth. This pattern is exemplified by the northwest and southeast seismicity clusters in Charlevoix, which yield S HS orientations strictly parallel and strongly oblique, respectively, to the regional S HB trend. Similar ~30° clockwise rotations are found for the North Appalachian zone and for the 2003 Bardwell earthquake sequence north of the New Madrid zone. The S HB /S HS rotations occur over 20-100 km in each seismic zone, but they are observed in zones separated by distances of up to 1500 km. A possible mechanism for the stress rotations may be the interaction between a long-wavelength stress perturbation source, such as postglacial rebound, and local stress concentrators, such as low-friction faults. The latter would allow low-magnitude (<10 MPa) postglacial rebound stresses to locally perturb the preexisting stress field in some seismic zones, whereas postglacial rebound stresses have little effect on the intraplate state of stress in general. © 2010 Geological Society of America.


1996 ◽  
Vol 23 ◽  
pp. 318-327 ◽  
Author(s):  
E. Le Meur

Accounting for isostasy in glaciological models has always been a necessity but these models mostly use very simple parameterizations (Le Meur and Huybrechts, 1996). The need for more realistic isostatic parameterizations rapidly became apparent, especially in the treatment of bedrock-sensitive issues such as the grounding-line migration (Huybrechts, 1990a, b). To this end, a rather sophisticated Earth model, avoiding most of the common assumptions, has been developed and is presented here. The two key groups of parameters, to which the model is most sensitive, are the Earth properties and the rheological law used for the mantle. The aim of this paper is first to justify the use of Maxwell rheology for the mantle and then to tune the most sensitive Earth parameter, namely the mantle viscosity, in order to match the numerous present-day uplift data over Fennoscandia. So, in the first instance, a short review of the different available rheologies is presented and discussed. The visco-elastic theory, as well as the mathematical background used in the present model, is also briefly sketched. Secondly, a glacial scenario over Fennoscandia served as an input for the model in a calibration test on the mantle-viscosity values. The degree of agreement of the model outputs with the present-day measurements gives a reference set of Green functions, to which one can reasonably refer when modelling the isostatic response over areas where such a control is not possible (Le Meur and Huybrechts, 1996). Finally, a closer look to the time-dependent surface displacements will confirm the ability for the model to reproduce correctly the main postglacial rebound characteristic features.


1972 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
R. I. Walcott

Vertical movements of the earth's surface related to postglacial rebound, the eustatic rise in sea level and the elastic deformation of the globe due to melting of late glacial ice sheets are calculated for simplified models of the earth. The movements of the ground are large and require a reevaluation of what is meant by eustatic sea level change. This is defined here as an ocean-wide average change in mean sea level and its measurement requires widely distributed observations weighted according to the areas of oceans they represent. Evidence of a postglacial (6000-0 years BP) relative rise in sea level comes largely from regions affected by ground subsidence related to adjacent upward postglacial rebound movements in deglaciated areas: evidence for a relative fall of sea level comes from coastlines well removed from areas of rebound and which have been affected by a rise of the continental areas through compensation for the eustatic load. It is concluded: (1) no substantial eustatic change of sea level in the past 6,000 years is required to explain postglacial sea levels: (2) in late glacial time the eustatic curve is probably more like the sea level curve of Texas and Mexico than that of the Atlantic seaboard of the United States: (3) that the information of past sea levels, when sufficiently widespread, can provide an important method of studying the deep mechanical structure of the earth.


Sign in / Sign up

Export Citation Format

Share Document