scholarly journals Sexually antagonistic evolution of mitochondrial and nuclear linkage

2021 ◽  
Author(s):  
Arunas Radzvilavicius ◽  
Sean Layh ◽  
Matthew D. Hall ◽  
Damian K. Dowling ◽  
Iain G. Johnston

AbstractAcross eukaryotes, genes encoding bioenergetic machinery are located in both mitochondrial and nuclear DNA, and incompatibilities between the two genomes can be devastating. Mitochondria are often inherited maternally, and theory predicts sex-specific fitness effects of mitochondrial mutational diversity. Yet how evolution acts on linkage patterns between mitochondrial and nuclear genomes is poorly understood. Using novel mito-nuclear population genetic models, we show that the interplay between nuclear and mitochondrial genes maintains mitochondrial haplotype diversity within populations, and it selects both for sex-independent segregation of mitochondrion-interacting genes and for paternal leakage. These effects of genetic linkage evolution can eliminate male-harming fitness effects of mtDNA mutational diversity. With maternal mitochondrial inheritance, females maintain a tight mitochondrial-nuclear match, but males accumulate mismatch mutations because of the weak statistical associations between the two genomic components. Sex-independent segregation of mitochondria-interacting loci improves the mito-nuclear match. In a sexually antagonistic evolutionary process, male nuclear alleles evolve to increase the rate of recombination, while females evolve to suppress it. Paternal leakage of mitochondria can evolve as an alternative mechanism to improve the mito-nuclear linkage. Our modelling framework provides an evolutionary explanation for the observed paucity of mitochondrion-interacting genes on mammalian sex chromosomes and for paternal leakage in protists, plants, fungi, and some animals.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xinzhi Liu ◽  
Shuhua Wei ◽  
Zhenyong Du ◽  
Jia He ◽  
Xinyue Zhang ◽  
...  

Biological invasions represent a natural rapid evolutionary process in which invasive species may present a major threat to biodiversity and ecosystem integrity. Analyzing the genetic structure and demographic history of invaded populations is critical for the effective management of invasive species. The spotted alfalfa aphid (SAA) Therioaphis trifolii is indigenous in the Mediterranean region of Europe and Africa and has invaded China, causing severe damages to the alfalfa industry. However, little is known about its genetic structure and invasion history. In this study, we obtained 167 complete mitochondrial genome sequences from 23 SAA populations across China based on high-throughput sequencing and performed population genetic and phylogenomic analyses. High haplotype diversity and low nucleotide diversity were found in SAA populations in China with distinct genetic structures, i.e., all populations diverged into three phylogenetic lineages. Demographic history analyses showed a recent expansion of the SAA population, consistent with the recent invasion history. Our study indicated that SAA may have invaded through multiple introduction events during commercial trades of alfalfa, although this needs further validation by nuclear markers.


1984 ◽  
Vol 4 (10) ◽  
pp. 2136-2141 ◽  
Author(s):  
T Kamiryo ◽  
K Okazaki

The development of peroxisomes in the cells of Candida tropicalis grown on oleic acid was accompanied by a markedly high expression of peroxisomal proteins. On the basis of this finding, the nuclear DNA library of this yeast was screened by differential hybridization, and 102 clones of oleic acid-inducible sequences were isolated. Seven coding regions were found to form clusters in three stretches of the genomic DNA. Five of the regions were identified as genes for peroxisomal polypeptides (PXPs). The coding sequence for PXP-2 hybrid selected an additional mRNA for PXP-4, the subunit of long-chain acyl coenzyme A oxidase, which was the most abundant PXP. PXP-2 and PXP-4 were close in apparent molecular weight and generated similar peptides when digested with a protease. The gene for PXP-4 was adjacent to that for PXP-2 on the genome and also hybridized to the mRNA coding for PXP-5. These and other similar results suggest that the genes for the peroxisomal proteins of this organism arose by duplication of a few ancestral genes.


ESC CardioMed ◽  
2018 ◽  
pp. 1528-1530
Author(s):  
Denis Duboc

Mitochondria are responsible for energy production in most eukaryotic cells. Each cell contains at least one mitochondrion and every mitochondrion contains two to ten copies of a circular DNA molecule (mitochondrial DNA or mtDNA). Cardiomyocytes contain approximately 10,000 mtDNA copies. MtDNA is composed of around 16,500 base pairs and 37 genes encoding 13 subunits of the respiratory chain complexes I, III, IV, and V, 22 mitochondrial tRNAs and 2 rRNAs. With each cell division, mitochondria and mtDNA are randomly distributed to daughter cells. In humans, mitochondria are inherited exclusively from the mother. In healthy people mtDNA copies are usually identical at birth (homoplasmy) but with ageing, mtDNA is particularly prone to somatic mutation because, unlike nuclear DNA, it is continuously replicated, even in non-dividing tissues such as myocardium. This can lead to the propagation of somatic mutations within single cells by a process called clonal expansion. In addition, mtDNA lacks an extensive DNA repair mechanism.


2009 ◽  
Vol 59 (5) ◽  
pp. 611-616 ◽  
Author(s):  
Takao Komatsuda ◽  
Björn Salomon ◽  
Roland von Bothmer

2014 ◽  
Vol 62 (3) ◽  
pp. 238 ◽  
Author(s):  
Z. Y. Zhang ◽  
S. Cashins ◽  
A. Philips ◽  
C. P. Burridge

Conservation of frogs is of global concern, owing to declines resulting from habitat destruction, global climate change, and disease. Knowledge of genetic variation in frog species is therefore desirable for the identification of management units. Here we surveyed mitochondrial DNA sequence variation in the Tasmanian endemic hylid frog Litoria burrowsae, which is infected by chytrid fungus, Batrachochytrium dendrobatidis, and may be declining. Neither phylogeographic structure nor deep phylogenetic divergence was detected in the species, although its populations were highly differentiated with respect to haplotype frequencies. The low-haplotype diversity in L. burrowsae suggests a recent bottleneck in the species, and population genetic structuring may reflect isolation by distance as well as founder effects associated with range expansion. Three putative management units were identified that require verification based on nuclear DNA variation and adaptation to local environments.


2011 ◽  
Vol 101 (4) ◽  
pp. 467-475 ◽  
Author(s):  
D. Chu ◽  
C.S. Gao ◽  
P. De Barro ◽  
F.H. Wan ◽  
Y.J. Zhang

AbstractIt is often considered that reduced genetic variation due to bottlenecks and founder effects limits the capacity for species to establish in new environments and subsequently spread. The recent invasion (during the past five years) of an alien whitefly, one member of Bemisia tabaci cryptic species complex, referred to as Mediterranean (herein referred to as Q-type) in Shandong Province, China, provides an ideal opportunity to study the changes in genetic variation between its home range in the Mediterranean region and its invasion range. Using both the mitochondrial cytochrome oxidase I (mtCOI) and nuclear (microsatellite) DNA, we show that Q in Shandong likely originated in the western Mediterranean. We also found that the haplotype diversity was low compared with its presumed geographic origin, whereas microsatellite allele diversity showed no such decline. A key factor in invasions is the establishment of females and so bottleneck and founder events can lead to a very rapid and considerable loss of mitochondrial diversity. The lack of haplotype diversity in Shandong supports the interpretation that, at one or more points between the western Mediterranean and China, the invading Q lost haplotype diversity, most probably through the serial process of establishment and redistribution through trade in ornamental plants. However, the loss in haplotype diversity does not necessarily mean that nuclear allelic diversity should also decline. Provided females can mate freely with whichever males are available, allelic diversity can be maintained or even increased relative to the origin of the invader. Our findings may offer some explanation to the apparent paradox between the concept of reduced genetic variation limiting adaptation to new environments and the observed low diversity in successful invaders.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8996 ◽  
Author(s):  
Hovirag Lancioni ◽  
Irene Cardinali ◽  
Andrea Giontella ◽  
Maria Teresa Antognoni ◽  
Arianna Miglio

Background In the last decades, Italy as well as other developed countries have registered a decrease in the population size of many local horse breeds. The continuous crossbreeding has determined the dilution of genetic heritage of several native breeds. The Italian Heavy Draught Horse (IHD) is the only autochthonous Italian coldblooded horse among these breeds; therefore, it represents a resource to be preserved. In 1927, the first generation of this breed was officially created by crossing different Heavy Draught horses with local mares and recorded in a Studbook. Methodology To provide the first comprehensive overview of the genetic diversity of Italian Heavy Draught horses from Central Italy, we produced and phylogenetically analysed 52 mitochondrial DNA (mtDNA) control-region sequences. Furthermore, we evaluated data available from GenBank (N = 568) to have a more complete scenario and to understand the relationships with other European Heavy Draught horse breeds. Results Among the IHD samples that were analysed, we identified ten of the 17 haplogroups described in modern horses. Most of these sequences fell into L, G, and M lineages, thus showing the overall mtDNA legacy of the ancestral mares that were probably used at the initial stages of breeding selections a long time ago. The high mitochondrial haplotype diversity (Hd = 0.969) found in our samples reflected the multiple maternal origins of the horses. Our results highlighted a considerable percentage of haplotypes shared especially with Bardigiano and Hungarian Heavy Draught breeds. Furthermore, both the presence of four unique haplotypes detected in our samples and their absence among all equine mitochondrial published data demonstrate a mitochondrial peculiarity that needs to be further investigated and preserved with careful breeding practices.


2019 ◽  
Author(s):  
Eva van der heijden ◽  
S. Eryn McFarlane ◽  
Tom van der Valk ◽  
Anna Qvarnström

AbstractHybrid dysfunction is an important source of reproductive isolation between emerging species. Bateson-Dobzhansky-Muller incompatibilities are theoretically well-recognized as the underlying cause of low hybrid dysfunction. However, especially in wild populations, little empirical evidence exists for which genes are involved in such incompatibilities. The relative role of ecological divergence in causing the build-up of genetic incompatibilities in relation to other processes such as genomic conflict therefore remains largely unknown. Genes involved in energy metabolism are potential candidates for genetic incompatibilities, since energy metabolism depends on co-expression of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) leading to mitonuclear coadaptation. When mitochondrial and nuclear genes lacking a co-evolutionary history appear together in hybrids, incompatibilities could arise.Ficedulaflycatcher F1 hybrids have a higher resting metabolic rate (RMR) compared to the parental species, which could be a sign of genetic incompatibilities between energy metabolism genes that diverged in response to environmental differences while the species were in allopatry. Based on sequences of 15 mitochondrial genes of 264 individuals, we show that the two species have divergent mtDNA caused by the build-up of mainly synonymous mutations and a few non-synonymous mutations. Pied flycatcher mitogenomes show evidence of non-neutrality, indicating a selective sweep or population expansion. There is little variation in the nuclear OXPHOS-related proteins and no significant deviation from neutrality, however, specific codon identified sites might be under positive selection in both mitochondrial and nuclear genes encoding OXPHOS proteins for complex I and III. Taken together, these diverged mitonuclear genes therefore constitute possible candidates underlying, at least part of the genetic incompatibilities that cause hybrid dysfunction in crosses between collared and pied flycatchers.


2021 ◽  
Author(s):  
Junchen Deng ◽  
Giacomo Assandri ◽  
Pallavi Chauhan ◽  
Ryo Futahashi ◽  
Andrea Galimberti ◽  
...  

Abstract Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism of the genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetic of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance in 17 I. elegans populations across Europe and Japan, and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20 000 to 44 000 years before present, which is consistent with the end of the last glacial period about 20 000 ya. Conclusions Our findings provide an example of how endosymbiont infections ca shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which can impact geographic patterns of mitochondrial genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document