peptide bond cleavage
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 11)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riley B. Peacock ◽  
Taylor McGrann ◽  
Marco Tonelli ◽  
Elizabeth A. Komives

AbstractSerine proteases catalyze a multi-step covalent catalytic mechanism of peptide bond cleavage. It has long been assumed that serine proteases including thrombin carry-out catalysis without significant conformational rearrangement of their stable two-β-barrel structure. We present nuclear magnetic resonance (NMR) and hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments on the thrombin-thrombomodulin (TM) complex. Thrombin promotes procoagulative fibrinogen cleavage when fibrinogen engages both the anion binding exosite 1 (ABE1) and the active site. It is thought that TM promotes cleavage of protein C by engaging ABE1 in a similar manner as fibrinogen. Thus, the thrombin-TM complex may represent the catalytically active, ABE1-engaged thrombin. Compared to apo- and active site inhibited-thrombin, we show that thrombin-TM has reduced μs-ms dynamics in the substrate binding (S1) pocket consistent with its known acceleration of protein C binding. Thrombin-TM has increased μs-ms dynamics in a β-strand connecting the TM binding site to the catalytic aspartate. Finally, thrombin-TM had doublet peaks indicative of dynamics that are slow on the NMR timescale in residues along the interface between the two β-barrels. Such dynamics may be responsible for facilitating the N-terminal product release and water molecule entry that are required for hydrolysis of the acyl-enzyme intermediate.


2021 ◽  
Vol 75 (1) ◽  
pp. 71-82
Author(s):  
Arthur Hinterholzer ◽  
Vesna Stanojlovic ◽  
Christof Regl ◽  
Christian G. Huber ◽  
Chiara Cabrele ◽  
...  

AbstractThe monitoring of non-enzymatic post-translational modifications (PTMs) in therapeutic proteins is important to ensure drug safety and efficacy. Together with methionine and asparagine, aspartic acid (Asp) is very sensitive to spontaneous alterations. In particular, Asp residues can undergo isomerization and peptide-bond hydrolysis, especially when embedded in sequence motifs that are prone to succinimide formation or when followed by proline (Pro). As Asp and isoAsp have the same mass, and the Asp-Pro peptide-bond cleavage may lead to an unspecific mass difference of + 18 Da under native conditions or in the case of disulfide-bridged cleavage products, it is challenging to directly detect and characterize such modifications by mass spectrometry (MS). Here we propose a 2D NMR-based approach for the unambiguous identification of isoAsp and the products of Asp-Pro peptide-bond cleavage, namely N-terminal Pro and C-terminal Asp, and demonstrate its applicability to proteins including a therapeutic monoclonal antibody (mAb). To choose the ideal pH conditions under which the NMR signals of isoAsp and C-terminal Asp are distinct from other random coil signals, we determined the pKa values of isoAsp and C-terminal Asp in short peptides. The characteristic 1H-13C chemical shift correlations of isoAsp, N-terminal Pro and C-terminal Asp under standardized conditions were used to identify these PTMs in lysozyme and in the therapeutic mAb rituximab (MabThera) upon prolonged storage under acidic conditions (pH 4–5) and 40 °C. The results show that the application of our 2D NMR-based protocol is straightforward and allows detecting chemical changes of proteins that may be otherwise unnoticed with other analytical methods.


2020 ◽  
Vol 477 (5) ◽  
pp. 953-970
Author(s):  
Vandna Sharma ◽  
Shekhar Kumar ◽  
Girish Sahni

To understand the role of substrate plasminogen kringles in its differential catalytic processing by the streptokinase — human plasmin (SK-HPN) activator enzyme, Fluorescence Resonance Energy Transfer (FRET) model was generated between the donor labeled activator enzyme and the acceptor labeled substrate plasminogen (for both kringle rich Lys plasminogen — LysPG, and kringle less microplasminogen — µPG as substrates). Different steps of plasminogen to plasmin catalysis i.e. substrate plasminogen docking to scissile peptide bond cleavage, chemical transformation into proteolytically active product, and the decoupling of the nascent product from the SK-HPN activator enzyme were segregated selectively using (1) FRET signal as a proximity sensor to score the interactions between the substrate and the activator during the cycle of catalysis, (2) active site titration studies and (3) kinetics of peptide bond cleavage in the substrate. Remarkably, active site titration studies and the kinetics of peptide bond cleavage have shown that post docking chemical transformation of the substrate into the product is independent of kringles adjacent to the catalytic domain (CD). Stopped-flow based rapid mixing experiments for kringle rich and kringle less substrate plasminogen derivatives under substrate saturating and single cycle turnover conditions have shown that the presence of kringle domains adjacent to the CD in the macromolecular substrate contributes by selectively speeding up the final step, namely the product release/expulsion step of catalysis by the streptokinase-plasmin(ogen) activator enzyme.


Metallomics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 649-653
Author(s):  
Nina Ewa Wezynfeld ◽  
Tomasz Frączyk ◽  
Arkadiusz Bonna ◽  
Wojciech Bal

NiO nanoparticles and non-stoichiometric black NiO were shown to be effective sources of Ni2+ ions causing sequence-selective peptide bond hydrolysis.


2020 ◽  
Vol 22 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Yi Sun ◽  
Moran Frenkel-Pinter ◽  
Charles L. Liotta ◽  
Martha A. Grover

Peptide cleavage can occur through scission and backbiting, depending on the pH.


2019 ◽  
Vol 476 (24) ◽  
pp. 3817-3834 ◽  
Author(s):  
Michael G. Friedrich ◽  
Zhen Wang ◽  
Kevin L. Schey ◽  
Roger J. W. Truscott

Long-lived proteins (LLPs) are present in numerous tissues within the human body. With age, they deteriorate, often leading to the formation of irreversible modifications such as peptide bond cleavage and covalent cross-linking. Currently understanding of the mechanism of formation of these cross-links is limited. As part of an ongoing study, proteomics was used to characterise sites of novel covalent cross-linking in the human lens. In this process, Lys residues were found cross-linked to C-terminal aspartates that had been present in the original protein as Asn residues. Cross-links were identified in major lens proteins such as αA-crystallin, αB-crystallin and aquaporin 0. Quantification of the level of an AQP0/AQP0 cross-linked peptide showed increased cross-linking with age and in cataract lenses. Using model peptides, a mechanism of cross-link formation was elucidated that involves spontaneous peptide bond cleavage on the C-terminal side of Asn residues resulting in the formation of a C-terminal succinimide. This succinimide does not form cross-links, but can hydrolyse to a mixture of C-terminal Asn and C-terminal Asp amide peptides. The C-terminal Asp amide is unstable at neutral pH and decomposes to a succinic anhydride. If the side chain of Lys attacks the anhydride, a covalent cross-link will be formed. This multi-step mechanism represents a link between two spontaneous events: peptide bond cleavage at Asn and covalent cross-linking. Since Asn deamidation and cleavage are abundant age-related modifications in LLPs, this finding suggests that such susceptible Asn residues should also be considered as potential sites for spontaneous covalent cross-linking.


2019 ◽  
Vol 36 (8) ◽  
Author(s):  
Hong-Jian Zheng ◽  
Bin-Bin Shen ◽  
Jing Wang ◽  
Haibin Wang ◽  
Guo-Li Huo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document