h9n2 subtype
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 1)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12512
Author(s):  
Xiaoyi Gao ◽  
Naidi Wang ◽  
Yuhong Chen ◽  
Xiaoxue Gu ◽  
Yuanhui Huang ◽  
...  

H9N2 subtype avian influenza A virus (AIV) is a causative agent that poses serious threats to both the poultry industry and global public health. In this study, we performed active surveillance to identify H9N2 AIVs from poultry (chicken, duck, and goose) and the environment of different regions in China, and we phylogenetically characterized the sequences. AIV subtype-specific reverse transcription polymerase chain reaction (RT-PCR) showed that 5.43% (83/1529) samples were AIV positive, and 87.02% (67/77) of which were H9N2 AIVs. Phylogenetic analysis revealed that all H9N2 field viruses belonged to the Y280-like lineage, exhibiting 93.9–100% and 94.6–100% of homology in the hemagglutinin (HA) gene and 94.4–100% and 96.3–100% in the neuraminidase (NA) gene, at the nucleotide (nt) and amino acid (aa) levels, respectively. All field viruses shared relatively lower identities with vaccine strains, ranging from 89.4% to 97.7%. The aa sequence at the cleavage site (aa 333–340) in HA of all the isolated H9N2 AIVs was PSRSSRG/L, which is a characteristic of low pathogenic avian influenza virus (LPAIV). Notably, all the H9N2 field viruses harbored eight glycosylation sites, whereas a glycosylation site 218 NRT was missing and a new site 313 NCS was inserted. All field viruses had NGLMR as their receptor binding sites (RBS) at aa position 224–229, showing high conservation with many recently-isolated H9N2 strains. All H9N2 field isolates at position 226 had the aa Leucine (L), indicating their ability to bind to sialic acid (SA) α, a 2–6 receptor of mammals that poses the potential risk of transmission to humans. Our results suggest that H9N2 AIVs circulating in poultry populations that have genetic variation and the potential of infecting mammalian species are of great significance when monitoring H9N2 AIVs in China.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yixin Xiao ◽  
Fan Yang ◽  
Fumin Liu ◽  
Hangping Yao ◽  
Nanping Wu ◽  
...  

Abstract Background The H9N2 subtype of avian influenza virus (AIV) has become the most widespread subtype of AIV among birds in Asia, which threatens the poultry industry and human health. Therefore, it is important to establish methods for the rapid diagnosis and continuous surveillance of H9N2 subtype AIV. Methods In this study, an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) and a colloidal gold immunochromatographic test (ICT) strip using monoclonal antibodies (MAbs) 3G4 and 2G7 were established to detect H9N2 subtype AIV. Results The AC-ELISA method and ICT strip can detect H9N2 subtype AIV quickly, and do not cross-react with other subtype AIVs or other viruses. The detection limit of AC-ELISA was a hemagglutinin (HA) titer of 4 for H9N2 subtype AIV per 100 μl sample, and the limit of detection of the HA protein of AIV H9N2 was 31.5 ng/ml. The ICT strip detection limit was an HA titer of 4 for H9N2 subtype AIV per 100 μl sample. Moreover, both detection methods exhibited good reproducibility and repeatability, with coefficients of variation < 5%. For detection in 200 actual poultry samples, the sensitivities and specificities of AC-ELISA were determined as 93.2% and 98.1%, respectively. The sensitivities and specificities of the ICT strips were determined as 90.9% and 97.4%, respectively. Conclusions The developed AC-ELISA and ICT strips displayed high specificity, sensitivity, and stability, making them suitable for rapid diagnosis and field investigation of H9N2 subtype AIV.


2021 ◽  
pp. 105204
Author(s):  
Rong-Rong Zhang ◽  
Xin Yang ◽  
Chun-Wei Shi ◽  
Ling-Jiao Yu ◽  
Yi-Bing Lian ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 19-23

Avian influenza is a viral pandemic disease of humans and birds, including commercial and house poultry. Avian influenza is a major concern around the world, which causes serious economic losses in the poultry industry, mainly in home backyard poultry. The backyard poultry is the potential source of income for rural people and indirectly contributes to decreasing the poverty of household women. Besides, in many developing countries, villagers full fill a part of their food demand by the backyard poultry; however, this sector is directly affected by biosecurity risks, including high and low pathogenic avian influenza infections like avian influenza H9N2 subtype. Avian influenza H9N2 subtype has low pathogenic zoonotic importance but still causes serious threats to the poultry industry. The backyard poultry industry is directly affected by this infection due to direct contact with wild migratory birds locating in different regions of the world. Antigenic drift and shift are one of the major conflicts of this infection resulting from a few days to a few months up to many years and also the main reason for the uncontrollable mutation in this infection. All over the world, there is no serious action taken to prevent the H9N2 subtype infection in backyard poultry. This situation has become severe because of the widespread of highly pathogenic avian influenza viruses in the past few years.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 672
Author(s):  
Nico Joel Halwe ◽  
Marco Gorka ◽  
Bernd Hoffmann ◽  
Melanie Rissmann ◽  
Angele Breithaupt ◽  
...  

Influenza A viruses (IAV) of subtype H9N2, endemic in world-wide poultry holdings, are reported to cause spill-over infections to pigs and humans and have also contributed substantially to recent reassortment-derived pre-pandemic zoonotic viruses of concern, such as the Asian H7N9 viruses. Recently, a H9N2 bat influenza A virus was found in Egyptian fruit bats (Rousettus aegyptiacus), raising the question of whether this bat species is a suitable host for IAV. Here, we studied the susceptibility, pathogenesis and transmission of avian and bat-related H9N2 viruses in this new host. In a first experiment, we oronasally inoculated six Egyptian fruit bats with an avian-related H9N2 virus (A/layer chicken/Bangladesh/VP02-plaque/2016 (H9N2)). In a second experiment, six Egyptian fruit bats were inoculated with the newly discovered bat-related H9N2 virus (A/bat/Egypt/381OP/2017 (H9N2)). While R. aegyptiacus turned out to be refractory to an infection with H9N2 avian-type, inoculation with the bat H9N2 subtype established a productive infection in all inoculated animals with a detectable seroconversion at day 21 post-infection. In conclusion, Egyptian fruit bats are most likely not susceptible to the avian H9N2 subtype, but can be infected with fruit bat-derived H9N2. H9-specific sero-reactivities in fruit bats in the field are therefore more likely the result of contact with a bat-adapted H9N2 strain.


2020 ◽  
Vol 248 ◽  
pp. 108803
Author(s):  
Hongqi Shang ◽  
Zhou Sha ◽  
Huan Wang ◽  
Yongqiang Miao ◽  
Xiangyun Niu ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Ahmed Mostafa ◽  
Claudia Blaurock ◽  
David Scheibner ◽  
Christin Müller ◽  
Ulrike Blohm ◽  
...  

Abstract The unprecedented spread of H5N8- and H9N2-subtype avian influenza virus (AIV) in birds across Asia, Europe, Africa, and North America poses a serious public health threat with a permanent risk of reassortment and the possible emergence of novel virus variants with high virulence in mammals. To gain information on this risk, we studied the potential for reassortment between two contemporary H9N2 and H5N8 viruses. While the replacement of the PB2, PA, and NS genes of highly pathogenic H5N8 by homologous segments from H9N2 produced infectious H5N8 progeny, PB1 and NP of H9N2 were not able to replace the respective segments from H5N8 due to residues outside the packaging region. Furthermore, exchange of the PB2, PA, and NS segments of H5N8 by those of H9N2 increased replication, polymerase activity and interferon antagonism of the H5N8 reassortants in human cells. Notably, H5N8 reassortants carrying the H9N2-subtype PB2 segment and to lesser extent the PA or NS segments showed remarkably increased virulence in mice as indicated by rapid onset of mortality, reduced mean time to death and increased body weight loss. Simultaneously, we observed that in chickens the H5N8 reassortants, particularly with the H9N2 NS segment, demonstrated significantly reduced transmission to co-housed chickens. Together, while the limited capacity for reassortment between co-circulating H9N2 and H5N8 viruses and the reduced bird-to-bird transmission of possible H5N8 reassortants in chickens may limit the evolution of such reassortant viruses, they show a higher replication potential in human cells and increased virulence in mammals.


Sign in / Sign up

Export Citation Format

Share Document