scholarly journals Systematic investigation of the link between enzyme catalysis and cold adaptation

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Catherine Stark ◽  
Teanna Bautista-Leung ◽  
Joanna Siegfried ◽  
Daniel Herschlag

Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a dominant adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To systematically test rate enhancement as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature (TGrowth) and analyzed trends of rate constants as a function of TGrowth. These data do not support a general increase in rate enhancement in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there is prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Nevertheless, we found that little of the rate constant variation for 20 KSI variants was accounted for by TGrowth. In contrast, and consistent with prior expectations, we observed a correlation between stability and TGrowth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate constants than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate constant variation.

2021 ◽  
Author(s):  
Catherine Stark ◽  
Teanna Bautista-Leung ◽  
Joanna Siegfried ◽  
Daniel Herschlag

Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a general adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To broadly test rate as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature (TGrowth) and analyzed trends of rate as a function of TGrowth. These data do not support a prevalent increase in rate in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there was prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Here, we found that little of the overall rate variation for 20 KSI variants was accounted for by TGrowth. In contrast, and consistent with prior expectations, we observed a correlation between stability and TGrowth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate variation.


1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.


1999 ◽  
Vol 64 (4) ◽  
pp. 585-594 ◽  
Author(s):  
Barbara Marczewska

The acceleration effect of p-toluidine on the electroreduction of Zn(II) on the mercury electrode surface in binary mixtures water-methanol and water-dimethylformamide is discussed. The obtained apparent and true forward rate constants of Zn(II) reduction indicate that the rate constant of the first electron transfer increases in the presence of p-toluidine. The acceleration effect may probably be accounted for by the concept of the formation on the mercury electrode an activated complex, presumably composed of p-toluidine and solvent molecules.


1995 ◽  
Vol 73 (12) ◽  
pp. 2137-2142 ◽  
Author(s):  
A.J. Elliot ◽  
M.P. Chenier ◽  
D.C. Ouellette

In this publication we report: (i) the rate constants for reaction of the hydrated electron with 1-hexyn-3-ol ((8.6 ± 0.3) × 108 dm3 mol−1 s−1 at 18 °C), cinnamonitrile ((2.3 ± 0.2) × 1010 dm3 mol−1 s−1 at 20 °C), and 1,3-diethyl-2-thiourea ((3.5 ± 0.3) × 108 dm3 mol−1 s−1 at 22 °C). For cinnamonitrile and diethylthiourea, the temperature dependence up to 200 °C and 150 °C, respectively, is also reported; (ii) the rate constants for the reaction of the hydroxyl radical with 1-hexyn-3-ol ((5.5 ± 0.5) × 109 dm3 mol−1 s−1 at 20 °C), cinnamonitrile ((9.2 ± 0.3) × 109 dm3 mol−1 s−1 at 21 °C), and diethylthiourea ((8.0 ± 0.8) × 108 dm3 mol−1 s−1 at 22 °C). For cinnamonitrile, the temperature dependence up to 200 °C is also reported; (iii) the rate constant for the hydrogen atom reacting with 1-hexyn-3-ol ((4.3 ± 0.4) × 109 dm3 mol−1 s−1 at 20 °C). Keywords: radiolysis, corrosion inhibitors, rate constants.


1991 ◽  
Vol 69 (2) ◽  
pp. 363-367
Author(s):  
Guoying Xu ◽  
Jan A. Herman

Ion/molecule reactions in mixtures of ethyl chloride with C1–C4 alkylamines were studied by ICR mass spectrometry. Ethyl cation transfer to C1–C4 alkylamines proceeds mainly through diethylchloronium ions with rate constants ~3 × 10−10cm3 s−1. In the case of s-butylamine the corresponding rate constant is 0.5 × 10−10 cm3 s−1. Key words: ICR mass spectrometry, ion/molecule reactions, ethylchloride, methylamine, ethylamine, propylamines, butylamines


1983 ◽  
Vol 61 (5) ◽  
pp. 801-808 ◽  
Author(s):  
Yuan L. Chow ◽  
Gonzalo E. Buono-Core ◽  
Bronislaw Marciniak ◽  
Carol Beddard

Bis(acetylacetonato)copper(II), Cu(acac)2, quenches triplet excited states of ketones and polynuclear aromatic hydrocarbons efficiently, but only aromatic ketones with high triplet energy successfully sensitize photoreduction of Cu(acac)2 in alcohols under nitrogen to give derivatives of aeetylacetonatocopper(I), Cu(acac). For the triplet state benzophenone-sensitized photoreduction of Cu(acac)2, the quantum yields of photoreduction (ΦC) and those of benzophenone disappearance (ΦB) were determined in methanol with various concentrations of Cu(acac)2. The values of the quenching rate constant, kq, determined from these two types of monitors on the basis of the proposed mechanism were in good agreement (6.89 ~ 7.35 × 109 M−1 s−1). This value was higher, by a factor of about two, than that obtained from the monitor of the benzophenone triplet decay rates generated by flash photolysis in the presence of Cu(acac)2. The quenching rate constants of various aromatic ketone and hydrocarbon triplet states by Cu(acac)2 were determined by flash photolysis to be in the order of the diffusion rate constant and the quantum yields of these photoreductions were found to be far from unity. Paramagnetic quenching, with contributions of electron exchange and charge transfer, was proposed as a possible quenching mechanism. For a series of aromatic ketone sensitizers with higher triplet energy, this mechanism was used to rationalize the observed high quenching rate constants in contrast to the low quantum yields of photoreduction.


2017 ◽  
Author(s):  
Ben Newsome ◽  
Mat Evans

Abstract. Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global use these rate constants. Expert panels synthesise laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the JPL and IUPAC evaluations we assess 50 mainly inorganic rate constants and 10 photolysis rates, through simulations where we increase the rate of the reactions to the 1σ upper value recommended by the expert panels. We assess the impact on 4 standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH    M →  HNO3, OH + CH4 → CH3O2 + H2O and O3 + NO → NO2 + O2 are the three largest source of uncertainty in these metrics. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions, gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 11, 12, 17 and 17 % respectively. These are larger than the spread between models in recent model inter-comparisons. Remote regions such as the tropics, poles, and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered when model results disagree with measurement. Calculations for the pre-industrial allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 Wm−2. This uncertainty (15 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model-model inter-comparison studies where the rate constants used in the models are all identical or very similar. Thus the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.


2021 ◽  
Author(s):  
Bernard Stevenson ◽  
Ethan Spielvogel ◽  
Emily Loiaconi ◽  
Victor M. Wambua ◽  
Roman Nakhamiyayev ◽  
...  

We present time-dependent percent and quantum yield measurements of a photoredox-catalyzed coupling reaction between 1,4-dicyanobenzene and N-phenylpyrrolidine. We also use transient absorption spectroscopy to examine the kinetics within the reaction and use kinetic modeling to extract rate constants and predict how changes in rate constant will impact the quantum yield.


1986 ◽  
Vol 6 (6) ◽  
pp. 724-738 ◽  
Author(s):  
A. C. Evans ◽  
M. Diksic ◽  
Y. L. Yamamoto ◽  
A. Kato ◽  
A. Dagher ◽  
...  

Regional cerebral blood volume (CBV) can be calculated using data obtained during the kinetic analysis of 18F-labeled 2-fluoro-2-deoxy-d-glucose (FDG) uptake measured by positron emission tomography (PET). As a result the influence of vascular activity upon the determination of FDG rate constants can be minimized. The method is investigated by simulation experiments and by analysis of PET studies on seven older, healthy human volunteers aged 52–70 years. The accuracy of measured FDG rate constants k1, k2, and k3, obtained either by omitting the early portion of the uptake curve or by explicit inclusion of CBV as a fit parameter, is compared. The root mean square error in measured rate constant for the latter method is equivalent to that obtained by omitting the first 2.5–3 min of tissue data and neglecting the CBV term. Hence, added information about the physiological state of the tissue is obtained without compromising the accuracy of the (FDG) rate constant measurement. In hyperemic tissue the explicit determination of the vascular fraction results in more accurate estimates of the FDG rate constants. The ratio of CBV determined by this method to CBV obtained using C15O in six subjects with CBV in the normal range was 0.92 ± 0.32. A comparison of the CBV image obtained by this method with that obtained using C15O in an arteriovenous malformation case demonstrates the accuracy of the approach over a wide range of CBV values. The mean value for CBV fraction in gray matter obtained by this method in the older control group was 0.040 ± 0.014. Average gray matter rate constants obtained were k1 = 0.084 ± 0.012, k2 = 0.150 ± 0.071, and k3 = 0.099 ± 0.045 min−1.


Sign in / Sign up

Export Citation Format

Share Document