scholarly journals Differential Expression of Glucose Transporter Proteins GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in the Placenta of Macrosomic, Small-for-Gestational-Age and Growth-Restricted Foetuses

2021 ◽  
Vol 10 (24) ◽  
pp. 5833
Author(s):  
Paweł Jan Stanirowski ◽  
Dariusz Szukiewicz ◽  
Agata Majewska ◽  
Mateusz Wątroba ◽  
Michał Pyzlak ◽  
...  

Placental transfer of glucose constitutes one of the major determinants of the intrauterine foetal growth. The objective of the present study was to evaluate the expression of glucose transporter proteins GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in the placenta of macrosomic, small-for-gestational-age (SGA) and growth-restricted foetuses (FGR). A total of 70 placental tissue samples were collected from women who delivered macrosomic ≥4000 g (n = 26), SGA (n = 11), growth-restricted (n = 13) and healthy control neonates (n = 20). Computer-assisted quantitative morphometry of stained placental sections was performed to determine the expression of selected GLUT proteins. Immunohistochemical staining identified the presence of all glucose transporters in the placental tissue. Quantitative morphometric analysis performed for the vascular density-matched placental samples revealed a significant decrease in GLUT-1 and increase in GLUT-3 protein expression in pregnancies complicated by FGR as compared to other groups (p < 0.05). In addition, expression of GLUT-8 was significantly decreased among SGA foetuses (p < 0.05). No significant differences in GLUTs expression were observed in women delivering macrosomic neonates. In the SGA group foetal birth weight (FBW) was negatively correlated with GLUT-3 (rho = −0.59, p < 0.05) and positively with GLUT-12 (rho = 0.616, p < 0.05) placental expression. In addition, a positive correlation between FBW and GLUT-12 expression in the control group (rho = 0.536, p < 0.05) was noted. In placentas derived from FGR-complicated pregnancies the expression of two major glucose transporters GLUT-1 and GLUT-3 is altered. On the contrary, idiopathic foetal macrosomia is not associated with changes in the placental expression of GLUT-1, GLUT-3, GLUT-8 and GLUT-12 proteins.

1999 ◽  
Vol 276 (3) ◽  
pp. R809-R817 ◽  
Author(s):  
Utpala G. Das ◽  
Robert E. Schroeder ◽  
William W. Hay ◽  
Sherin U. Devaskar

To determine the cellular adaptations to fetal hyperglycemia and hypoglycemia, we examined the time-dependent effects on basal (GLUT-1 and GLUT-3) and insulin-responsive (GLUT-4) glucose transporter proteins by quantitative Western blot analysis in fetal ovine insulin-insensitive (brain and liver) and insulin-sensitive (myocardium, skeletal muscle, and adipose) tissues. Maternal glucose infusions causing fetal hyperglycemia resulted in a transient 30% increase in brain GLUT-1 but not GLUT-3 levels and a decline in liver and adipose GLUT-1 and myocardial and skeletal muscle GLUT-1 and GLUT-4 levels compared with gestational age-matched controls. Maternal insulin infusions leading to fetal hypoglycemia caused a decline in brain GLUT-3, an increase in brain GLUT-1, and a subsequent decline in liver GLUT-1, with no significant change in insulin-sensitive myocardium, skeletal muscle, and adipose tissue GLUT-1 or GLUT-4 concentrations, compared with gestational age-matched sham controls. We conclude that fetal glucose transporters are subject to a time-dependent and tissue- and isoform-specific differential regulation in response to altered circulating glucose and/or insulin concentrations. These cellular adaptations in GLUT-1 (and GLUT-3) are geared toward protecting the conceptus from perturbations in substrate availability, and the adaptations in GLUT-4 are geared toward development of fetal insulin resistance.


1993 ◽  
Vol 290 (3) ◽  
pp. 913-919 ◽  
Author(s):  
R J Sargeant ◽  
M R Pâquet

The effect of continuous insulin stimulation on the rates of turnover and on the total cellular contents of the glucose-transporter proteins GLUT1 and GLUT4 in 3T3-L1 adipocytes was investigated. Pulse-and-chase studies with [35S]methionine followed by immunoprecipitation of GLUT1 and GLUT4 with isoform-specific antibodies revealed the half-lives of these proteins to be 19 h and 50 h respectively. Inclusion of 100 nM insulin in the chase medium resulted in a decrease in the half-lives of both proteins to about 15.5 h. This effect of insulin was specific for the glucose-transporter proteins, as the average half-life of all proteins was found to be 55 h both with and without insulin stimulation. The effect of insulin on the rate of synthesis of the glucose transporters was determined by the rate of incorporation of [35S]methionine. After 24 h of insulin treatment, the rate of synthesis of GLUT1 and GLUT4 were elevated over control levels by 3.5-fold and 2-fold respectively. After 72 h of treatment under the same conditions, the rate of synthesis of GLUT1 remained elevated by 2.5-fold, whereas the GLUT4 synthesis rate was not different from control levels. Western-blot analysis of total cellular membranes revealed a 4.5-fold increase in total cellular GLUT1 content and a 50% decrease in total cellular GLUT4 after 72 h of insulin treatment. These observations suggest that the rates of synthesis and degradation of GLUT1 and GLUT4 in 3T3-L1 adipocytes are regulated independently and that these cells respond to prolonged insulin treatment by altering the metabolism of GLUT1 and GLUT4 proteins in a specific manner.


Author(s):  
Mary Shannon Byers ◽  
Christianna Howard ◽  
Xiaofei Wang

The GLUT members belong to a family of glucose transporter proteins that facilitate glucose transport across the cell membrane. The mammalian GLUT family consists of thirteen members (GLUTs 1-12 and HMIT). Humans have a recently duplicated GLUT member, GLUT14. Avians express the majority of GLUT members. The arrangement of multiple GLUTs across all somatic tissues signifies the important role of glucose across all organisms. Defects in glucose transport have been linked to metabolic disorders, insulin resistance and diabetes. Despite the essential importance of these transporters, our knowledge regarding GLUT members in avians is fragmented. It has been clear that there are no chicken orthologs of mammalian GLUT4 and GLUT7. Our examination of GLUT members in the chicken revealed that some chicken GLUT members do not have corresponding orthologs in mammals. We review the information regarding GLUT orthologs and their function and expression in mammals and birds, with emphasis on chickens and humans.


2001 ◽  
Vol 281 (4) ◽  
pp. R1256-R1263 ◽  
Author(s):  
Marianne S. Anderson ◽  
Jing He ◽  
Judy Flowers-Ziegler ◽  
Sherin U. Devaskar ◽  
William W. Hay

We measured net fetal glucose uptake rate from the placenta, shown previously to be equal to total fetal glucose utilization rate (GURf) and proportional to fetal hindlimb skeletal muscle glucose utilization, under normal conditions and after 1, 2.5, and 24 h of selective hyperglycemia (↑G) or selective hyperinsulinemia (↑I). We simultaneously measured the amount of Glut 1 and Glut 4 glucose transporter proteins in fetal sheep skeletal muscle. With ↑G, GURf was increased ∼40% at 1 and 2.5 h but returned to the control rate by 24 h. This transient ↑G-specific ↑GURf was associated with increased plasma membrane-associated Glut 1 (4-fold) and intracellular Glut 4 (3-fold) protein beginning at 1 h. With ↑I, GURf was increased ∼70% at 1, 2.5, and 24 h. This more sustained ↑I-specific ↑GURf was associated with a significant increase in Glut 4 protein (2-fold) at 2.5 h but no change in Glut 1 protein. These results show that ↑G and ↑I have independent effects on the amount of Glut 1 and Glut 4 glucose transporter proteins in ovine fetal skeletal muscle. These effects are time dependent and isoform specific and may contribute to increased glucose utilization in fetal skeletal muscle. The lack of a sustained temporal correlation between the increase in transporter proteins and glucose utilization rates indicates that subcellular localization and activity of a transporter or tissues other than the skeletal muscle contribute to net GURf.


1997 ◽  
Vol 272 (2) ◽  
pp. E267-E274 ◽  
Author(s):  
S. J. Vannucci ◽  
E. M. Gibbs ◽  
I. A. Simpson

This study describes the effects of diabetes on brain growth, cerebral glucose utilization (CGU), and the glucose transporter proteins GLUT-1 and GLUT-3 in the genetically diabetic db/db mouse. Mice were studied at 5 and 10 wk of age and compared with age-matched nondiabetic littermates. At 5 wk, db/db mice were not yet hyperglycemic, but their body weights were 27.5% greater than those of their nondiabetic littermates. By 10 wk, db/db mice were both hyperglycemic (blood glucose values of 39.3 +/- 4.3 vs. 12.1 +/- 2.1 mmol/l for db/db and control, respectively) and obese, with a twofold increase in body weight. Significant reductions in brain weight were observed at 5 wk (15% decrease in brain wet wt), and no further brain growth was observed, such that by 10 wk, brains of db/db mice were 25% smaller than those of control mice; brain wet weight-to-dry weight ratios were slightly reduced. Global rates of CGU, as determined with 2-[14C]deoxyglucose, were significantly reduced in the 10-wk diabetic mice. Levels of brain glucose and brain-to-blood glucose ratios were increased in 5- and 10-wk db/db mice, reflecting adequate glucose delivery to the brain. Blood-brain barrier GLUT-1 levels were unchanged, and mRNA levels were regionally increased. The expression of the neuronal glucose transporter GLUT-3 was not reduced to a significant extent in brains of db/db mice. The results of this study indicate that the db/db mouse has markedly decelerated brain growth accompanied by global reductions in glucose metabolism that are not due to reductions in glucose transport capacity.


1994 ◽  
Vol 267 (4) ◽  
pp. E605-E611 ◽  
Author(s):  
S. J. Vannucci ◽  
F. Maher ◽  
E. Koehler ◽  
I. A. Simpson

Progressive dehydration due to water deprivation and streptozotocin diabetes both produce increased activity of the hypothalamoneurohypophysial system and enhanced vasopressin secretion. To determine whether enhanced metabolic activity affects glucose transporter protein expression, this study examined the effect of these conditions on 45-kDa GLUT-1 and the neuronal glucose transporter, GLUT-3, which mediate glucose transport in the rat neurohypophysis. Progressive water deprivation increased hematocrit, plasma electrolytes Na+ and Cl-, and vasopressin over 3 days, relative to the severity of dehydration. Plasma vasopressin increased threefold by 24 h, reaching 4.5-fold by 72 h. These changes were reflected in a 56 and 75% decrease in neurohypophysial vasopressin content by 48 and 72 h, respectively. Significant changes in glucose transporters were also observed at 48 and 72 h, with GLUT-1 increasing by 18 and 44% and GLUT-3 increasing by 42 and 55%, respectively. Streptozotocin-induced diabetes produced increases in hematocrit, plasma Cl-, and vasopressin, although the magnitude of these changes was less than with dehydration. There was a twofold increase in plasma vasopressin by 3 days, commensurate with the onset of overt diabetes, and a threefold increase by 2 wk. These changes were reflected in a 30 and 40% decline in neural lobe vasopressin content, respectively. Despite the difference in the magnitude of hormone response, GLUT-3 increased by the same amount (53%) as in dehydration. GLUT-1, however, was decreased 16% by 3 days and 25% by 1 and 2 wk of diabetes. Although the opposite effects on GLUT-1 may relate to differences in circulating insulin or glucose, this study is the first demonstration of increased expression of GLUT-3 in response to a common hypothalamic signal in these two conditions.


Endocrinology ◽  
2002 ◽  
Vol 143 (11) ◽  
pp. 4295-4303 ◽  
Author(s):  
M. Lucia Gavete ◽  
Maria Agote ◽  
M. Angeles Martin ◽  
Carmen Alvarez ◽  
Fernando Escriva

Abstract The high energy demands of myocardium are met through the metabolism of lipids and glucose. Importantly, enhanced glucose utilization rates are crucial adaptations of the cardiac cell to some pathological conditions, such as hypertrophy and ischemia, but the effects of undernutrition on heart glucose metabolism are unknown. Our previous studies have shown that undernutrition increases insulin-induced glucose uptake by skeletal muscle. Consequently, we considered the possibility of a similar adaptation in the heart. With this aim, undernourished rats both in the basal state and after euglycemic hyperinsulinemic clamps were used to determine the following parameters in myocardium: glucose uptake, glucose transporter (GLUT) content, and some key components of the insulin signaling cascade. Heart membranes were prepared by subcellular fractionation in sucrose gradients. Although GLUT-4, GLUT-1, and GLUT-3 proteins and GLUT-4/1 mRNAs were reduced by undernutrition, basal and insulin-stimulated 2-deoxyglucose uptake were significantly enhanced. Phosphoinositol 3-kinase activity remained greater than control values in both conditions. The abundance of p85α and p85β regulatory subunits of phosphoinositol 3-kinase was increased as was phospho-Akt during hyperinsulinemia. These changes seem to improve the insulin stimulus of GLUT-1 translocation, as its content was increased at the surface membrane. Such adaptations associated with undernutrition must be crucial to improvement of cardiac glucose uptake.


Sign in / Sign up

Export Citation Format

Share Document