scholarly journals Vibrational energies of some diatomic molecules for a modified and deformed potential

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. A. Onate ◽  
I. B. Okon ◽  
M. C. Onyeaju ◽  
O. Ebomwonyi

AbstractA molecular potential model is proposed and the solutions of the radial Schrӧdinger equation in the presence of the proposed potential is obtained. The energy equation and its corresponding radial wave function are calculated using the powerful parametric Nikiforov–Uvarov method. The energies of cesium dimer for different quantum states were numerically obtained for both negative and positive values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer were calculated numerically using their respective spectroscopic parameters. The calculated values for the three molecules are in excellent agreement with the observed values. Finally, we calculated different expectation values and examined the effects of the deformed and adjustable parameters on the expectation values.

2021 ◽  
Author(s):  
C. A. Onate ◽  
I. B. Okon ◽  
M. C. Onyeaju ◽  
O. Ebomwonyi

Abstract A molecular potential model is proposed and the solutions of the radial Schrӧdinger equation in the presence of the proposed potential is obtained. The energy equation and its corresponding radial wave function are calculated using the powerful parametric Nikiforov-Uvarov method. The energies of cesium dimer for different quantum states were numerically obtained for both negative and positive values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer were calculated numerically using their respective spectroscopic parameters. The calculated values for the three molecules are in excellent agreement with the observed values. Finally, we calculated different expectation values and examined the effects of the deformed and adjustable parameters on the expectation values.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. A. Onate ◽  
T. A. Akanbi ◽  
I. B. Okon

AbstractAn approximate solution of the Schrӧdinger equation for a molecular attractive potential was obtained using the parametric Nikiforov–Uvarov method. The energy equation and the corresponding radial wave functions were calculated. The effects of the potential parameters on the energy eigenvalues were examined. The thermal properties under the molecular attractive potential were calculated and the behaviour of the thermal properties with the maximum quantum state (λ) and the temperature parameter (β) respectively, were studied. Using the molecular spectroscopic parameters, the Rydberg–Klein–Rees (RKR) of cesium dimer and lithium dimer were both obtained and compared with the experimental values. The RKR values of both cesium dimer and lithium dimer calculated aligned with the observed values. The deviation and average deviation of the RKR for each molecule were also calculated.


2020 ◽  
Vol 19 (02) ◽  
pp. 2050007
Author(s):  
C. A. Onate ◽  
L. S. Adebiyi ◽  
D. T. Bankole

The radial Schrödinger equation was solved with the combination of three important potentials with [Formula: see text] as deformed parameter via the parametric Nikiforov–Uvarov method and the energy equation as well as the corresponding normalized radial wave function were obtained in close and compact form. The energy equation obtained was used to study eight molecules. The effect of the deformed parameter on energy eigenvalues was also studied numerically. The subset of the combined potential was also studied numerically and the results were found to be in agreement with the previous results. To extend the application of our work, the wave function obtained was used to calculate some theoretic quantities such as the Tsallis entropy, Rényi entropy and information energy. By putting the Tsallis index to 2, we deduced the information energy from Tsallis entropy. Finally, the effect of the deformed parameter and screening parameter, respectively, on the theoretic quantities were also studied.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 519-533
Author(s):  
Clement Atachegbe Onate ◽  
Michael Chukwudi Onyeaju ◽  
Ituen Bassey Okon

Abstract We solved a one-dimensional time-dependent Feinberg–Horodecki equation for an improved Wei molecular energy potential function using the parametric Nikiforov–Uvarov method. The quantized momentum and the corresponding wave functions were obtained. With the help of the wave functions obtained, we calculated Shannon entropy for both the position space and momentum space. The results were used to study four molecules. The results of Shannon entropy were found to be in excellent agreement with those found in the literature. For more usefulness of these studies, the quantized momentum obtained was transformed into an energy equation with certain transformations. The energy equation was then used to calculate some thermodynamic properties such as vibrational mean energy, vibrational specific heat, vibrational mean free energy, and vibrational entropy via computation of the partition function. The thermodynamic properties studied for CO, NO, CH, and ScH showed that for a certain range of the temperature studied, the molecules exhibited similar features except for the vibrational entropy.


2007 ◽  
Vol 22 (26) ◽  
pp. 4825-4832 ◽  
Author(s):  
JIAN-YOU GUO ◽  
FANG ZHOU ◽  
FENG-LIANG GUO ◽  
JIAN-HONG ZHOU

Under the condition of pseudospin symmetry, the exact solution of Dirac equation is studied and that no bound solutions are observed for generalized asymmetrical Hartmann potential, which is in agreement with that for Coulomb potential. With the analytic continuation method, the unbound solutions are presented by mapping the wave functions of bound states in the complex momentum plane. Furthermore, the scattering phase shifts are obtained from the radial wave function by analyzing the asymptotic behavior of the confluent hypergeometric functions.


2009 ◽  
Vol 18 (05n06) ◽  
pp. 1383-1388
Author(s):  
N. J. UPADHYAY ◽  
N. G. KELKAR ◽  
K. P. KHEMCHANDANI ◽  
B. K. JAIN

We present a calculation for η production in the p-6Li fusion near threshold including the η-7Be final state interaction (FSI). We consider the 6Li and 7Be nuclei as α-d and α-3He clusters respectively. The calculations are done for the lowest states of 7 Be with [Formula: see text] resulting from the L = 1 radial wave function. The η-7Be interaction is incorporated through the η-7BeT–matrix, constructed from the medium modified matrices for the η-3He and η-α systems. These medium modified matrices are obtained by solving few body equations, where the scattering in nuclear medium is taken into account.


2020 ◽  
Vol 34 (21) ◽  
pp. 2050209
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
M. U. Ibezim-Ezeani ◽  
Hewa Y. Abdullah

The modified version of the generalized Mobius square (GMS) potential has been obtained by employing the dissociation energy and equilibrium bond length as explicit parameters. The potential parameters have been defined in terms of the molecular parameters. The modified GMS potential has also been used to model internuclear interaction potential curves for different states of diatomic molecules. Also, we have obtained the rotational–vibrational energy spectra of the new GMS potential model, both analytically and numerically for the different diatomic molecules. This was done by employing a Pekeris-type approximation scheme and an appropriate coordinate transformation to solve the Schrodinger equation. Our results have been compared with the experimental Rydberg–Klein–Rees (RKR) data and its corresponding average absolute deviations in terms of the dissociation energy computed. The effects of the vibrational and rotational quantum numbers on the rotational–vibrational energies for the different states of the various diatomic molecules have also been discussed. This paper has shown to be highly relevant to the studies of thermodynamic and thermochemical functions of diatomic molecules.


Sign in / Sign up

Export Citation Format

Share Document