radial wave function
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. A. Onate ◽  
I. B. Okon ◽  
M. C. Onyeaju ◽  
O. Ebomwonyi

AbstractA molecular potential model is proposed and the solutions of the radial Schrӧdinger equation in the presence of the proposed potential is obtained. The energy equation and its corresponding radial wave function are calculated using the powerful parametric Nikiforov–Uvarov method. The energies of cesium dimer for different quantum states were numerically obtained for both negative and positive values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer were calculated numerically using their respective spectroscopic parameters. The calculated values for the three molecules are in excellent agreement with the observed values. Finally, we calculated different expectation values and examined the effects of the deformed and adjustable parameters on the expectation values.


2021 ◽  
Author(s):  
C. A. Onate ◽  
I. B. Okon ◽  
M. C. Onyeaju ◽  
O. Ebomwonyi

Abstract A molecular potential model is proposed and the solutions of the radial Schrӧdinger equation in the presence of the proposed potential is obtained. The energy equation and its corresponding radial wave function are calculated using the powerful parametric Nikiforov-Uvarov method. The energies of cesium dimer for different quantum states were numerically obtained for both negative and positive values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer were calculated numerically using their respective spectroscopic parameters. The calculated values for the three molecules are in excellent agreement with the observed values. Finally, we calculated different expectation values and examined the effects of the deformed and adjustable parameters on the expectation values.


2021 ◽  
Vol 9 (04) ◽  
pp. 48-57
Author(s):  
Youssou Gning ◽  
◽  
Malick Sow ◽  
Babou Diop ◽  
Boubacar Sow ◽  
...  

In this paper, we report the energies and resonant widths of the [(2s3s 1Se and 2s3s 3Se) (2s4s 1Se and 2s4s 3Se) (2s3p 1P0 and 2s3p 3P0) (2s4p 1P0 and 2s4p 3P0) (2p3p 1De and 2p3p 3De) (2p4p 1De and 2p4p 3De) (3s4s 1Se and 3s4s 3Se) (3s4p 1P0 and 3s4p 3P0) (3p4p 1De and 3p4p 3De) (3d4d 1Ge and 3d4d 1Ge)] Doubly Excited States of Helium isoelectronic series with nuclear charge Z (2 ≤ Z ≤ 10).Calculations are performedusing the Complex Rotation Method (CRM) in the framework of a variational procedure. The purpose of this study required a new correlated hydrogenic radial wave function combined with a Hylleraas wave function. The study leads to analytical expressions which are carried out under special MAXIMA computational program. This proposed variational procedure, leads to accurate results in good agreement with available other theoretical results.The present accurate data may be a useful guideline for future experimental and theoretical studies in the (Nℓ Nℓ) 2S+1Lᴨsystems.


2021 ◽  
pp. 2150085
Author(s):  
V. I. Zhaba

Numerical modeling of the deuteron wave function in the coordinate representation for the phenomenological nucleon–nucleon potential Argonne v18 has been performed. For this purpose, the asymptotic behavior of the radial wave function has been taken into account near the origin of coordinates and at infinity. The charge deuteron form factor [Formula: see text], depending on the transmitted momentums up to [Formula: see text], has been calculated employing five models for the deuteron wave function. A characteristic difference in calculations of [Formula: see text] is observed near the positions of the first and second zero. The difference between the obtained values for [Formula: see text] form factor has been analyzed using the values of the ratios and differences for the results. Obtained outcomes for charge deuteron form factor at large momentums may be a prediction for future experimental data.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 137
Author(s):  
V. I. Zhaba

Modeling of the deuteron wave function in coordinate representation for the nucleon-nucleon potential Reid93 were performed. For this purpose, the asymptotics of the radial wave function near the origin of coordinates and at infinity are taken into account. The most simple and physical asymptotics were applied. In this case, the superfluous knots of both components of the deuteron wave function for the coordinate value r=0.301 fm were compensated. Taking into account the asymptotics of the wave function has little effect on the general behavior of the calculated polarization characteristics of t20 and Ауу. Particular points of the transmitted momentum have been identified, where the tensor deuteron polarization t20 and the tensor analyzing power Ауу show a clear difference.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Alexandre Belin ◽  
Aitor Lewkowycz ◽  
Gábor Sárosi

Abstract We study a T2 deformation of large N conformal field theories, a higher dimensional generalization of the $$ T\overline{T} $$ T T ¯ deformation. The deformed partition function satisfies a flow equation of the diffusion type. We solve this equation by finding its diffusion kernel, which is given by the Euclidean gravitational path integral in d + 1 dimensions between two boundaries with Dirichlet boundary conditions for the metric. This is natural given the connection between the flow equation and the Wheeler-DeWitt equation, on which we offer a new perspective by giving a gauge-invariant relation between the deformed partition function and the radial WDW wave function. An interesting output of the flow equation is the gravitational path integral measure which is consistent with a constrained phase space quantization. Finally, we comment on the relation between the radial wave function and the Hartle-Hawking wave functions dual to states in the CFT, and propose a way of obtaining the volume of the maximal slice from the T2 deformation.


2020 ◽  
Vol 17 (35) ◽  
pp. 100-108
Author(s):  
Suci FANIANDARI ◽  
A. SUPARMI ◽  
C. CARI

Schrodinger equation on a toroidal coordinate was proposed in theoretical physics to get the information and the behavior of the system of particle. It was solved just recently in case of a charged scalar particle interacting with a uniform magnetic field, a uniform electric field, and a neutral charge constrained to the surface. The methodology used in the referred work was to solve the Schrodinger equation using an approach outlined in the Whittaker-Watson treatise, which deals with an infinite-dimensional eigenvalue problem and specific particular values of the applied field for eigenfunction problem. In contrast, in the quantum mechanical problem, one had an infinite-dimensional generalized eigenvalue problem. This study aimed to obtain the non-relativistic energy eigenvalue and the radial wave function of the Schrodinger equation under the influence of Yukawa potential. The Supersymmetric Quantum Mechanics (SUSY QM) method was used as a basis to tackle the primary objective of this paper to study the problem of a particle with variable mass in toroidal coordinate. The proper super potential was used to deal with the hyperbolic form of effective potential, and the energy spectra were calculated for different quantum numbers, potential depth, and potential parameters. The radial wave function equation for ground and excited state were obtained. The results showed that the increasing value of the quantum numbers caused the energy spectra of the system to increase to the highest value when the quantum number was equal to the potential parameter, which means the most effective energy value was produced, then it was decreased afterward. While the energy value did not depend on the change of the potential parameter. This property could be used to produce this equation as an application of the previous results, the Schrödinger eigenfunction was used as the starting points to solve the other equation in the same geometrical setting and potential.


2020 ◽  
Vol 19 (02) ◽  
pp. 2050007
Author(s):  
C. A. Onate ◽  
L. S. Adebiyi ◽  
D. T. Bankole

The radial Schrödinger equation was solved with the combination of three important potentials with [Formula: see text] as deformed parameter via the parametric Nikiforov–Uvarov method and the energy equation as well as the corresponding normalized radial wave function were obtained in close and compact form. The energy equation obtained was used to study eight molecules. The effect of the deformed parameter on energy eigenvalues was also studied numerically. The subset of the combined potential was also studied numerically and the results were found to be in agreement with the previous results. To extend the application of our work, the wave function obtained was used to calculate some theoretic quantities such as the Tsallis entropy, Rényi entropy and information energy. By putting the Tsallis index to 2, we deduced the information energy from Tsallis entropy. Finally, the effect of the deformed parameter and screening parameter, respectively, on the theoretic quantities were also studied.


2018 ◽  
Vol 33 (16) ◽  
pp. 1850090
Author(s):  
Juan-Juan Du ◽  
Xue-Jing Wang ◽  
You-Biao He ◽  
Si-Jiang Yang ◽  
Zhong-Heng Li

We study the wave equation governing massless fields of all spins (s = 0, [Formula: see text], 1, [Formula: see text] and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.


2017 ◽  
Vol 4 (6) ◽  
pp. 170541 ◽  
Author(s):  
Abinael B. Oliveira ◽  
Knut Bakke

Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.


Sign in / Sign up

Export Citation Format

Share Document