paradox of enrichment
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 2)

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jawdat Alebraheem

We propose a stochastic predator-prey model to study a novel idea that involves investigating random noises effects on the enrichment paradox phenomenon. Existence and stochastic boundedness of a unique positive solution with positive initial conditions are proved. The global asymptotic stability is studied to determine the occurrence of the enrichment paradox phenomenon. We show theoretically that intensive noises play an important role in the occurrence of the phenomenon, where increasing intensive noises lead to occurrence of the paradox of enrichment. We perform numerical simulations to verify and demonstrate the theoretical results. The new results in this study may contribute to increasing attention to study the random noise effects on some ecological and biological phenomena as the paradox of enrichment.


Oikos ◽  
2020 ◽  
Vol 130 (1) ◽  
pp. 95-109
Author(s):  
Pierre Quévreux ◽  
Sébastien Barot ◽  
Élisa Thébault

2019 ◽  
Vol 310 ◽  
pp. 120-127 ◽  
Author(s):  
Vinicius Weide ◽  
Maria C. Varriale ◽  
Frank M. Hilker

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 532
Author(s):  
Jawdat Alebraheem

The paradox of the enrichment phenomenon, considered one of the main counterintuitive observations in ecology, likely destabilizes predator–prey dynamics by increasing the nutrition of the prey. We use two systems to study the occurrence of the paradox of enrichment: The prey–predator system and the one prey, two predators system, with Holling type I and type II functional and numerical responses. We introduce a new approach that involves the connection between the occurrence of the enrichment paradox and persistence and extinction dynamics. We apply two main analytical techniques to study the persistence and extinction dynamics of two and three trophics, respectively. The linearity and nonlinearity of functional and numerical responses plays important roles in the occurrence of the paradox of enrichment. We derive the persistence and extinction conditions through the carrying capacity parameter, and perform some numerical simulations to demonstrate the effects of the paradox of enrichment when increasing carrying capacity.


2018 ◽  
Author(s):  
Pierre Quévreux ◽  
Sébastien Barot ◽  
Élisa Thébault

AbstractNutrient cycling is fundamental to ecosystem functioning. Despite recent major advances in the understanding of complex food web dynamics, food web models have so far generally ignored nutrient cycling. However, nutrient cycling is expected to strongly impact food web stability and functioning. To make up for this gap, we built an allometric and size structured food web model including nutrient cycling. By releasing mineral nutrients, recycling increases the availability of limiting resources for primary producers and links each trophic level to the bottom of food webs. We found that nutrient cycling can provide a significant part of the total nutrient supply of the food web, leading to a strong enrichment effect that promotes species persistence in nutrient poor ecosystems but leads to a paradox of enrichment at high nutrient inputs. The presence of recycling loops linking each trophic level to the basal resources weakly affects species biomass temporal variability in the food web. Recycling loops tend to slightly dampen the destabilising effect of nutrient enrichment on consumer temporal variability while they have opposite effects for primary producers. By considering nutrient cycling, this new model improves our understanding of the response of food webs to nutrient availability and opens perspectives to better link studies on food web dynamics and ecosystem functioning.


2017 ◽  
Vol 4 (3) ◽  
pp. 160830 ◽  
Author(s):  
Wataru Toyokawa

Theoretical models of predator–prey systems predict that sufficient enrichment of prey can generate large amplitude limit cycles, paradoxically causing a high risk of extinction (the paradox of enrichment). Although real ecological communities contain many gregarious species, whose foraging behaviour should be influenced by socially transmitted information, few theoretical studies have examined the possibility that social foraging might resolve this paradox. I considered a predator population in which individuals play the producer–scrounger foraging game in one-prey-one-predator and two-prey-one-predator systems. I analysed the stability of a coexisting equilibrium point in the one-prey system and that of non-equilibrium dynamics in the two-prey system. The results revealed that social foraging could stabilize both systems, and thereby resolve the paradox of enrichment when scrounging behaviour (i.e. kleptoparasitism) is prevalent in predators. This suggests a previously neglected mechanism underlying a powerful effect of group-living animals on the sustainability of ecological communities.


2016 ◽  
Author(s):  
Wataru Toyokawa

AbstractTheoretical models of predator-prey system predict that sufficient enrichment of prey can generate large amplitude limit cycles, paradoxically causing a high risk of extinction (the paradox of enrichment). While real ecological communities contain many gregarious species whose foraging behaviour should be influenced by socially transmitted information, few theoretical studies have examined the possibility that social foraging might be a resolution of the paradox. I considered a predator population in which individuals play the producer-scrounger foraging game both in a one-prey-one-predator system and a two-prey-one-predator system. I analysed the stability of a coexisting equilibrium point in the former one-prey system and that of non-equilibrium dynamics of the latter two-prey system. The result showed that social foraging can stabilise both systems and thereby resolves the paradox of enrichment when scrounging behaviour is prevalent in predators. This suggests a previously neglected mechanism underlying a powerful effect of group-living animals on sustainability of ecological communities.


Sign in / Sign up

Export Citation Format

Share Document