b class genes
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255679
Author(s):  
Yin-He Zhao ◽  
Xue-Mei Zhang ◽  
De-Zhu Li

Saururus chinensis is a core member of Saururaceae, an ancient, perianthless (lacking petals or sepals) family of the magnoliids in the Mesangiospermae, which is important for understanding the origin and evolution of early flowers due to its unusual floral composition and petaloid bracts. To compare their transcriptomes, RNA-seq abundance analysis identified 43,463 genes that were found to be differentially expressed in S. chinensis bracts. Of these, 5,797 showed significant differential expression, of which 1,770 were up-regulated and 4,027 down-regulated in green compared to white bracts. The expression profiles were also compared using cDNA microarrays, which identified 166 additional differentially expressed genes. Subsequently, qRT-PCR was used to verify and extend the cDNA microarray results, showing that the A and B class MADS-box genes were up-regulated in the white bracts. Phylogenetic analysis was performed on putative S. chinensis A and B-class of MADS-box genes to infer evolutionary relationships within the A and B-class of MADS-box gene family. In addition, nature selection and protein interactions of B class MADS-box proteins were inferred that B-class genes free from evolutionary pressures. The results indicate that petaloid bracts display anatomical and gene expression features normally associated with petals, as found in petaloid bracts of other species, and support an evolutionarily conserved developmental program for petaloid bracts.


2019 ◽  
Vol 88 (2) ◽  
pp. 284-292 ◽  
Author(s):  
Kana Miura ◽  
Mutsumi Nakada ◽  
Shosei Kubota ◽  
Shusei Sato ◽  
Soichiro Nagano ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169777 ◽  
Author(s):  
Ye Ai ◽  
Chunling Zhang ◽  
Yalin Sun ◽  
Weining Wang ◽  
Yanhong He ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Masahiro Otani ◽  
Ahmad Sharifi ◽  
Shosei Kubota ◽  
Kanako Oizumi ◽  
Fumi Uetake ◽  
...  

Abstract B class MADS-box genes play important roles in petal and stamen development. Some monocotyledonous species, including liliaceous ones, produce flowers with petaloid tepals in whorls 1 and 2. A modified ABCE model has been proposed to explain the molecular mechanism of development of two-layered petaloid tepals. However, direct evidence for this modified ABCE model has not been reported to date. To clarify the molecular mechanism determining the organ identity of two-layered petaloid tepals, we used chimeric repressor gene-silencing technology (CRES-T) to examine the suppression of B function in the liliaceous ornamental Tricyrtis sp. Transgenic plants with suppressed B class genes produced sepaloid tepals in whorls 1 and 2 instead of the petaloid tepals as expected. In addition, the stamens of transgenic plants converted into pistil-like organs with ovule- and stigma-like structures. This report is the first to describe the successful suppression of B function in monocotyledonous species with two-layered petaloid tepals, and the results strongly support the modified ABCE model.


2012 ◽  
Vol 31 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Xiao-Fang Li ◽  
Jing Xu ◽  
Ru Yang ◽  
Lin-Yan Jia ◽  
Xin-Jie Deng ◽  
...  

2007 ◽  
Vol 217 (4) ◽  
pp. 263-273 ◽  
Author(s):  
Naofumi Takamatsu ◽  
Gene Kurosawa ◽  
Masayoshi Takahashi ◽  
Ryouichi Inokuma ◽  
Minoru Tanaka ◽  
...  

Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4657-4667 ◽  
Author(s):  
Stuart F. Baum ◽  
Yuval Eshed ◽  
John L. Bowman

In contrast to the conservation of floral organ order in angiosperm flowers, nectary glands can be found in various floral and extrafloral positions. Since in Arabidopsis, the nectary develops only at the base of stamens, its specification was assayed with regard to the floral homeotic ABC selector genes. We show that the nectary can form independently of any floral organ identity gene but is restricted to the ‘third whorl’ domain in the flower. This domain is, in part, specified redundantly by LEAFY and UNUSUAL FLORAL ORGANS. Even though nectary glands arise from cells previously expressing the B class genes, their proper development requires the down-regulation of B class gene activity. While CRABS CLAW is essential for nectary gland formation, its ectopic expression is not sufficient to induce ectopic nectary formation. We show that in Arabidopsis multiple factors act to restrict the nectary to the flower, and surprisingly, some of these factors are LEAFY and UNUSUAL FLORAL ORGANS.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5635-5644 ◽  
Author(s):  
M.E. Griffith ◽  
A. da Silva Conceicao ◽  
D.R. Smyth

PETAL LOSS is a new class of flower development gene whose mutant phenotype is confined mostly to the second whorl. Two properties are disrupted, organ initiation and organ orientation. Initiation is frequently blocked, especially in later-formed flowers, or variably delayed. The few petals that arise occupy a wider zone of the flower primordium than normal. Also, a minority of petals are trumpet-shaped, thread-like or stamenoid. Studies of ptl combined with homeotic mutants have revealed that the mutant effect is specific to the second whorl, not to organs with a petal identity. We propose that the PTL gene normally promotes the induction of organ primordia in specific regions of the second floral whorl. In ptl mutants, these regions are enlarged and organ induction is variably reduced, often falling below a threshold. A dominant genetic modifier of the ptl mutant phenotype was found in the Landsberg erecta strain that significantly boosts the mean number of petals per flower, perhaps by reinforcing induction so that the threshold is now more often reached. The second major disruption in ptl mutants relates to the orientation adopted by second whorl organs from early in their development. In single mutants the full range of orientations is seen, but when B function (controlling organ identity) is also removed, most second whorl organs now face outwards rather than inwards. Orientation is unaffected in B function single mutants. Thus petals apparently perceive their orientation within the flower primordium by a mechanism requiring PTL function supported redundantly by that of B class genes.


Sign in / Sign up

Export Citation Format

Share Document