hexameric atpase
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Tatjana von Rosen ◽  
Lena ML Keller ◽  
Eilika Weber-Ban

Bacteria employ a multitude of strategies to cope with the challenges they face in their natural surroundings, be it as pathogens, commensals or free-living species in rapidly changing environments like soil. Mycobacteria and other Actinobacteria acquired proteasomal genes and evolved a post-translational, ubiquitin-like modification pathway called pupylation to support their survival under rapidly changing conditions and under stress. The proteasomal 20S core particle (20S CP) interacts with ring-shaped activators like the hexameric ATPase Mpa that recruits pupylated substrates. The proteasomal subunits, Mpa and pupylation enzymes are encoded in the so-called Pup-proteasome system (PPS) gene locus. Genes in this locus become vital for bacteria to survive during periods of stress. In the successful human pathogen Mycobacterium tuberculosis, the 20S CP is essential for survival in host macrophages. Other members of the PPS and proteasomal interactors are crucial for cellular homeostasis, for example during the DNA damage response, iron and copper regulation, and heat shock. The multiple pathways that the proteasome is involved in during different stress responses suggest that the PPS plays a vital role in bacterial protein quality control and adaptation to diverse challenging environments.


2019 ◽  
Vol 294 (46) ◽  
pp. 17168-17185 ◽  
Author(s):  
Robert P. Sparks ◽  
Andres S. Arango ◽  
Matthew L. Starr ◽  
Zachary L. Aboff ◽  
Logan R. Hurst ◽  
...  

The homeostasis of most organelles requires membrane fusion mediated by soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Science ◽  
2019 ◽  
Vol 365 (6452) ◽  
pp. eaax1033 ◽  
Author(s):  
Edward C. Twomey ◽  
Zhejian Ji ◽  
Thomas E. Wales ◽  
Nicholas O. Bodnar ◽  
Scott B. Ficarro ◽  
...  

The Cdc48 adenosine triphosphatase (ATPase) (p97 or valosin-containing protein in mammals) and its cofactor Ufd1/Npl4 extract polyubiquitinated proteins from membranes or macromolecular complexes for subsequent degradation by the proteasome. How Cdc48 processes its diverse and often well-folded substrates is unclear. Here, we report cryo–electron microscopy structures of the Cdc48 ATPase in complex with Ufd1/Npl4 and polyubiquitinated substrate. The structures show that the Cdc48 complex initiates substrate processing by unfolding a ubiquitin molecule. The unfolded ubiquitin molecule binds to Npl4 and projects its N-terminal segment through both hexameric ATPase rings. Pore loops of the second ring form a staircase that acts as a conveyer belt to move the polypeptide through the central pore. Inducing the unfolding of ubiquitin allows the Cdc48 ATPase complex to process a broad range of substrates.


2019 ◽  
Vol 20 (5) ◽  
pp. 1021
Author(s):  
Ndeye Kebe ◽  
Krishnananda Samanta ◽  
Priyanka Singh ◽  
Joséphine Lai-Kee-Him ◽  
Viviana Apicella ◽  
...  

HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide substrate, we found that LmHslV can be activated by peptides derived from the C-termini of both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency. Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was accompanied by a large conformational remodeling, which represents a yet unidentified layer of control of HslV activation.


2018 ◽  
Vol 115 (52) ◽  
pp. 13246-13251 ◽  
Author(s):  
Xinyi Fu ◽  
Vladyslava Sokolova ◽  
Kristofor J. Webb ◽  
William Old ◽  
Soyeon Park

In the proteasome holoenzyme, the hexameric ATPases (Rpt1-Rpt6) enable degradation of ubiquitinated proteins by unfolding and translocating them into the proteolytic core particle. During early-stage proteasome assembly, individual Rpt proteins assemble into the hexameric “Rpt ring” through binding to their cognate chaperones: Nas2, Hsm3, Nas6, and Rpn14. Here, we show that Rpt ring assembly employs a specific ubiquitination-mediated control. An E3 ligase, Not4, selectively ubiquitinates Rpt5 during Rpt ring assembly. To access Rpt5, Not4 competes with Nas2 until the penultimate step and then with Hsm3 at the final step of Rpt ring completion. Using the known Rpt–chaperone cocrystal structures, we show that Not4-mediated ubiquitination sites in Rpt5 are obstructed by Nas2 and Hsm3. Thus, Not4 can distinguish a Rpt ring that matures without these chaperones, based on its accessibility to Rpt5. Rpt5 ubiquitination does not destabilize the ring but hinders incorporation of incoming subunits—Rpn1 ubiquitin receptor and Ubp6 deubiquitinase—thereby blocking progression of proteasome assembly and ubiquitin regeneration from proteasome substrates. Our findings reveal an assembly checkpoint where Not4 monitors chaperone actions during hexameric ATPase ring assembly, thereby ensuring the accuracy of proteasome holoenzyme maturation.


2018 ◽  
Author(s):  
Andres H. de la Peña ◽  
Ellen A. Goodall ◽  
Stephanie N. Gates ◽  
Gabriel C. Lander ◽  
Andreas Martin

AbstractThe 26S proteasome is the primary eukaryotic degradation machine and thus critically involved in numerous cellular processes. The hetero-hexameric ATPase motor of the proteasome unfolds and translocates targeted protein substrates into the open gate of a proteolytic core, while a proteasomal deubiquitinase concomitantly removes substrate-attached ubiquitin chains. However, the mechanisms by which ATP hydrolysis drives the conformational changes responsible for these processes have remained elusive. Here we present the cryo-EM structures of four distinct conformational states of the actively ATP-hydrolyzing, substrate-engaged 26S proteasome. These structures reveal how mechanical substrate translocation accelerates deubiquitination, and how ATP-binding, hydrolysis, and phosphate-release events are coordinated within the AAA+ motor to induce conformational changes and propel the substrate through the central pore.


2016 ◽  
Vol 36 (19) ◽  
pp. 2514-2523 ◽  
Author(s):  
Zhengyi Zhao ◽  
Gian Marco De-Donatis ◽  
Chad Schwartz ◽  
Huaming Fang ◽  
Jingyuan Li ◽  
...  

Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity. Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is supported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of ϕ29 was previously reported as a pentameric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that acquires the average of many images.


2014 ◽  
Vol 106 (2) ◽  
pp. 690a
Author(s):  
Takuma Iwasa ◽  
Yong-Woon Han ◽  
Hiroaki Yokota ◽  
Ryuji Yokokawa ◽  
Teruo Ono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document