calcium carbonate content
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 18 (182) ◽  
Author(s):  
Stephanie C. McClelland ◽  
Phillip Cassey ◽  
Golo Maurer ◽  
Mark E. Hauber ◽  
Steven J. Portugal

The avian eggshell is a bio-ceramic structure that protects the embryo. It is composed almost entirely of calcium carbonate and a small amount of organic material. An optimal amount of calcium carbonate in the eggshell is essential for the embryo's development, yet how the ratio of calcium carbonate to organic matter varies between species has not been investigated. Calcium is a limiting resource for most birds, so its investment in their eggs should be optimized for a bird's life history. We measured the relative calcium carbonate content of eggshells in 222 bird species and tested hypotheses for how this trait has evolved with the life-history strategies of these species and other traits of their respective egg physiologies. We found that (i) eggshell calcium carbonate content was positively correlated with species having thinner eggshells and smaller than expected eggs relative to incubating parental mass, (ii) species with small mean clutch sizes had lower calcium carbonate content in their eggshells, and (iii) for species with larger clutch sizes, eggshell calcium carbonate content was negatively correlated with their mean lifespan. The pattern of lower eggshell calcium carbonate in longer lived, larger clutched birds suggests that calcium provision to the eggshell has long-term costs for the individual.


Author(s):  
Minjun Yang ◽  
Christopher Batchelor-McAuley ◽  
Samuel Barton ◽  
Rosalind E.M. Rickaby ◽  
Heather A. Bouman ◽  
...  

2021 ◽  
Author(s):  
Minjun Yang ◽  
Christopher Batchelor-McAuley ◽  
Samuel Barton ◽  
Rosalind E.M. Rickaby ◽  
Heather A. Bouman ◽  
...  

Author(s):  
Inta Umbraško ◽  
Aleksandrs Petjukevičs ◽  
Anna Batjuka ◽  
Nadežda Harlamova

In the present study, different eggs were collected and analyzed from five various animal species: European pond turtle (Emys orbicularis (Linnaeus, 1758)), giant African land snail (Achatina fulica (Bowdich, 1822)), common ostrich (Struthio camelus (Linnaeus, 1758)), white, light-brown, and dark-brown laying hen (Gallus gallus domesticus (Linnaeus, 1758) and European quail (Coturnix coturnix (Linnaeus, 1758). The typical mineral shell mainly composed of the calcite polymorph of CaCO3 but the eggshell consists of membranes, that composed mainly of proteins. The shell quality also could be assigned by several external and internal factors such as oviposition time, animal genotype and age, housing system (for poultry), and mineral nutrition complex. The CaCO3 content was determined by the standard titration method, coz the titration could provide a reliable method for evaluation of CaCO3 content in different types of eggshells. The structural surface characterization of eggshells was performed by scanning electron microscopy (SEM) with a field emission gun. In terms of chemical composition, ostrich eggshells generally did not differ much from those of laying hen, turtles, giant snails, or quail eggs, but the concentration of calcium carbonate was the highest. The average calcium carbonate content of various eggshells is between 84 and 98%. The thickness of the eggshell ranges from 0.08 to 1.89 mm, and it  is not the same over the entire surface of the egg. At the sharp end of the egg, the shell is slightly thicker than at the blunt end. The purpose of this study was to study the quantitative content of calcium carbonate in various eggshells of different animals to draw further conclusions in which animals the eggshell contains the maximum amount of biological calcium carbonate. 


2021 ◽  
Vol 16 (2) ◽  
pp. 143-157
Author(s):  
Hiroaki SANO ◽  
Mikio YAMADA ◽  
Hirofumi KITAJIMA ◽  
Tukasa KASHIWABARA ◽  
Mikihito FURUKAWA ◽  
...  

2021 ◽  
Vol 331 ◽  
pp. 03001
Author(s):  
Jodin Makinda ◽  
Khairul Anuar Kassim ◽  
Kamarudin Ahmad ◽  
Abubakar Sadiq Muhammed ◽  
Muttaqa Uba Zango

It is not uncommon for mining activity to generate wastes associated with negative engineering impacts include susceptibility to runoff due to the absence of vegetation, erosion, and sinkhole. Due to their high degree of permeability, movement of heavy metal contaminants in waste soils and aquifers occurs actively along with the hydrogeological parameters, and research on using biocementation methods such as enzyme induced calcite precipitation (EICP) to reduce the hydraulic conductivity is therefore beneficial. Mine waste soil collected from a copper mine in Lohan Dam, Sabah is characterized physically, morphologically, and chemically then treated with EICP under different operational parameters include curing duration (1,3,7 days), curing temperatures (5, 10, and 25 oC ), and relative density (70 and 80 %). The hydraulic conductivity was then tested using a constant head permeability test and the calcium carbonate content (%) is determined using the HCL washing method. Properties of the Lohan Dam wastes are found to be predominantly coarse grain soil of low plasticity, high specific gravity, high permeability, acidic in nature, and low organic content. Morphologically, they are composed of powdered and hardened particles with dark brown color with high amount of irregular-shaped particles. Mineralogical, Lohan Dam soil wastes contain a high level of heavy metals beyond the safety level of the Department of Environmental Malaysia. EICP treatment had to change the degree of permeability from ‘high and medium’ to ‘low’ with a 94-97% reduction in hydraulic conductivity corresponding to the amount of calcium carbonate content produced ranging 6.94-9.63%. In conclusion, relative density shows the marginal effect, curing duration, and temperature shows a more significant impact on the treatment effectiveness.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5066
Author(s):  
Maria Emiliana Fortună ◽  
Andrei Lobiuc ◽  
Lucian-Mihai Cosovanu ◽  
Maria Harja

In the present paper, aspects concerning the obtained and characterization of additive systems used for maximizing filler retention, and the effects on paper properties, were investigated. The effects of retention additives over properties of paper, containing fibers from in-situ loading (IS-CCP), were analyzed against the effects of additives over properties of paper containing fibers from conventional loading, obtained by the addition of calcium carbonate in precipitated form (CCP). The physico-mechanical properties were analyzed by various analyses and investigations: calcium carbonate content, X-ray diffraction, scanning electron microscopy (SEM) images, optical and mechanical properties, in order to develop the best systems of retention additives for obtaining higher retention loads for making paper with high content of nano-filler material. The obtained results reveal that at the same level of calcium carbonate content, all paper samples with in-situ loading had higher the optical and mechanical properties than the paper obtained by conventional loading in all cases the additives studied. For all studied properties, nanoparticles had a positively influence over paper properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Lijie Chen ◽  
Xuejun Chen ◽  
Xin Yang ◽  
Pengyan Bi ◽  
Xiang Ding ◽  
...  

The influence of precipitated calcium carbonate on the strength and microstructure of red clay was studied. Precipitated calcium carbonate was added to red clay at ratios of 0%, 5%, 10%, 15%, and 20%. Shear tests were carried out on the samples to observe the effect of calcium carbonate on the mechanical properties of red clay. The results showed that, with increasing calcium carbonate content, the strength of red clay first decreased and then increased. The maximum strength was obtained for the sample with 20% calcium carbonate. Scanning electron microscopy (SEM) was used to observe the changes in microstructure caused by addition of calcium carbonate. The pores and cracks analysis system (PCAS) was used to quantitatively characterize the microstructure changes detected in SEM images. The addition of calcium carbonate decreased the pore area and increased the total number of pores of red clay. The incorporation of calcium carbonate caused the red clay particles to agglomerate. The higher the calcium carbonate content, the stronger the agglomeration of red clay particles in the soil samples.


Sign in / Sign up

Export Citation Format

Share Document