flavivirus vaccine
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 2)

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 85
Author(s):  
Jessamine E. Hazlewood ◽  
Bing Tang ◽  
Kexin Yan ◽  
Daniel J. Rawle ◽  
Jessica J. Harrison ◽  
...  

We recently developed a chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV) and used this to generate a chimeric ZIKV vaccine (BinJ/ZIKA-prME) that protected IFNAR-/- dams and fetuses from infection. Herein, we show that a single vaccination of IFNAR-/- mice with unadjuvanted BinJ/ZIKA-prME generated neutralizing antibody responses that were retained for 14 months. At 15 months post vaccination, mice were also completely protected against detectable viremia and substantial body weight loss after challenge with ZIKVPRVABC59. BinJ/ZIKA-prME vaccination thus provided long-term protective immunity without the need for adjuvant or replication of the vaccine in the vaccine recipient, both attractive features for a ZIKV vaccine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Whitney R. Baldwin ◽  
Holli A. Giebler ◽  
Janae L. Stovall ◽  
Ginger Young ◽  
Kelly J. Bohning ◽  
...  

AbstractThe development of a safe and effective Zika virus (ZIKV) vaccine has become a global health priority since the widespread epidemic in 2015-2016. Based on previous experience in using the well-characterized and clinically proven dengue virus serotype-2 (DENV-2) PDK-53 vaccine backbone for live-attenuated chimeric flavivirus vaccine development, we developed chimeric DENV-2/ZIKV vaccine candidates optimized for growth and genetic stability in Vero cells. These vaccine candidates retain all previously characterized attenuation phenotypes of the PDK-53 vaccine virus, including attenuation of neurovirulence for 1-day-old CD-1 mice, absence of virulence in interferon receptor-deficient mice, and lack of transmissibility in the main mosquito vectors. A single DENV-2/ZIKV dose provides protection against ZIKV challenge in mice and rhesus macaques. Overall, these data indicate that the ZIKV live-attenuated vaccine candidates are safe, immunogenic and effective at preventing ZIKV infection in multiple animal models, warranting continued development.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 338
Author(s):  
Shengfeng Wan ◽  
Shengbo Cao ◽  
Xugang Wang ◽  
Yanfei Zhou ◽  
Weidong Yan ◽  
...  

The flavivirus Zika (ZIKV) has emerged as a global threat, making the development of a ZIKV vaccine a priority. While live-attenuated vaccines are known to induce long-term immunity but reduced safety, inactivated vaccines exhibit a weaker immune response as a trade-off for increased safety margins. To overcome the trade-off between immunogenicity and safety, the concept of a third-generation flavivirus vaccine based on single-cycle flaviviruses has been developed. These third-generation flavivirus vaccines have demonstrated extreme potency with a high level of safety in animal models. However, the production of these single-cycle, encapsidation-defective flaviviruses requires a complicated virion packaging system. Here, we investigated a new single-cycle flavivirus vaccine, a vertebrate-specific replication-defective ZIKV (VSRD-ZIKV), in a mouse model. VSRD-ZIKV replicates to high titers in insect cells but can only initiate a single-round infection in vertebrate cells. During a single round of infection, VSRD-ZIKV can express all the authentic viral antigens in vertebrate hosts. VSRD-ZIKV immunization elicited a robust cellular and humoral immune response that protected against a lethal ZIKV challenge in AG129 mice. Additionally, VSRD-ZIKV-immunized pregnant mice were protected against vertically transferring a lethal ZIKV infection to their offspring. Immunized male mice were protected and prevented viral accumulation in the testes after being challenged with lethal ZIKV. Overall, our results indicate that VSRD-ZIKV induces a potent protective immunity against ZIKV in a mouse model and represents a promising approach to develop novel single-cycle arbovirus vaccines.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1177
Author(s):  
Hadrian Sparks ◽  
Brendan Monogue ◽  
Benjamin Akiyama ◽  
Jeffrey Kieft ◽  
J. David Beckham

The Zika virus (ZIKV), like other flaviviruses, produces several species of sub-genomic RNAs (sfRNAs) during infection, corresponding to noncoding RNA fragments of different lengths that result from the exonuclease degradation of the viral 3′ untranslated region (UTR). Over the course of infection, these sfRNAs accumulate in the cell as a result of an incomplete viral genome degradation of the 3′ UTR by the host 5′ to 3′ exoribonuclease, Xrn1. The halting of Xrn1 in the 3′ UTR is due to two RNA pseudoknot structures in the 3′ UTR, termed exoribonuclease-resistant RNA1 and 2 (xrRNA1&2). Studies with related flaviviruses have shown that sfRNAs are important for pathogenicity and inhibiting both mosquito and mammalian host defense mechanisms. However, these investigations have not included ZIKV and there is very limited data addressing how sfRNAs impact infection in a whole animal model or specific tissues. In this study, we generate a sfRNA1-deficient ZIKV (X1) by targeted mutation in the xrRNA1 3′ UTR structure. We find that the X1 virus lacks the production of the largest ZIKV sfRNA species, sfRNA1. Using the X1 virus to infect adult Ifnar1−/− mice, we find that while the lack of sfRNA1 does not alter ZIKV replication in the spleen, there is a significant reduction of ZIKV genome replication in the brain and placenta compared to wild-type ZIKV infection. Despite the attenuated phenotype of the X1 ZIKV, mice develop a robust neutralizing antibody response. We conclude that the targeted disruption of xrRNA1 results in tissue-specific attenuation while still supporting robust neutralizing antibody responses. Future studies will need to investigate the tissue-specific mechanisms by which ZIKV sfRNAs influence infection and may utilize targeted xrRNA mutations to develop novel attenuated flavivirus vaccine approaches.


2020 ◽  
Author(s):  
Hadrian Sparks ◽  
Brendan Monogue ◽  
Benjamin Akiyama ◽  
Jeffrey S. Kieft ◽  
J. David Beckham

AbstractZika virus (ZIKV), like other flaviviruses, produces several species of sub-genomic RNAs (sfRNAs) during infection, corresponding to noncoding RNA fragments of different lengths derived from the viral 3’ untranslated region (UTR). Over the course of infection, these sfRNAs accumulate in the cell as a result of incomplete viral genome degradation of the 3’UTR by host 5’ to 3’ exoribonuclease (Xrn1). The halting of Xrn1 in the 3’UTR is due to two RNA pseudoknot structures in the 3’UTR termed exoribonuclease-resistant RNA1 and 2 (xrRNA1&2). Studies with related flaviviruses have shown that sfRNAs are important for pathogenicity and inhibiting both mosquito and mammalian host defense mechanisms. However, these investigations have not included ZIKV and there is very limited data addressing how sfRNAs impact infection in a whole animal model or specific tissues. In this study, we rescued a sfRNA1-deficient ZIKV (X1) by targeted mutation in the xrRNA1 3’ UTR structure. We found that virus which lacks the production of the largest ZIKV sfRNA species, sfRNA1. Using the X1 virus to infect adult IFNAR1-/- mice, we found that while the lack of sfRNA1 does not alter ZIKV replication in the spleen, there is a significant reduction of ZIKV genome replication in the brain and placenta compared to WT ZIKV infection. Despite thee attenuated phenotype of the X1 ZIKV, mice develop a robust neutralizing antibody response. We conclude that targeted disruption of xrRNA1 results in tissue-specific attenuation while still supporting robust neutralizing antibody responses. Future studies will need to investigate the tissue-specific mechanisms by which ZIKV sfRNAs influence infection and may utilize targeted xrRNA mutations to develop novel attenuated flavivirus vaccine approaches.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 496
Author(s):  
Jessamine E. Hazlewood ◽  
Daniel J. Rawle ◽  
Bing Tang ◽  
Kexin Yan ◽  
Laura J. Vet ◽  
...  

Zika virus (ZIKV) is the etiological agent of congenital Zika syndrome (CZS), a spectrum of birth defects that can lead to life-long disabilities. A range of vaccines are in development with the target population including pregnant women and women of child-bearing age. Using a recently described chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV), we generated a ZIKV vaccine (BinJ/ZIKA-prME) and illustrate herein its ability to protect against fetal brain infection. Female IFNAR−/− mice were vaccinated once with unadjuvanted BinJ/ZIKA-prME, were mated, and at embryonic day 12.5 were challenged with ZIKVPRVABC59. No infectious ZIKV was detected in maternal blood, placenta, or fetal heads in BinJ/ZIKA-prME-vaccinated mice. A similar result was obtained when the more sensitive qRT PCR methodology was used to measure the viral RNA. BinJ/ZIKA-prME vaccination also did not result in antibody-dependent enhancement of dengue virus infection or disease. BinJ/ZIKA-prME thus emerges as a potential vaccine candidate for the prevention of CSZ.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 258 ◽  
Author(s):  
Laura J. Vet ◽  
Yin Xiang Setoh ◽  
Alberto A. Amarilla ◽  
Gervais Habarugira ◽  
Willy W. Suen ◽  
...  

Virulent strains of West Nile virus (WNV) are highly neuro-invasive and human infection is potentially lethal. However, no vaccine is currently available for human use. Here, we report the immunogenicity and protective efficacy of a vaccine derived from a chimeric virus, which was constructed using the structural proteins (prM and E) of the Kunjin strain of WNV (WNVKUN) and the genome backbone of the insect-specific flavivirus Binjari virus (BinJV). This chimeric virus (BinJ/WNVKUN-prME) exhibits an insect-specific phenotype and does not replicate in vertebrate cells. Importantly, it authentically presents the prM-E proteins of WNVKUN, which is antigenically very similar to other WNV strains and lineages. Therefore BinJ/WNVKUN-prME represents an excellent candidate to assess as a vaccine against virulent WNV strains, including the highly pathogenic WNVNY99. When CD1 mice were immunized with purified BinJ/WNVKUN-prME, they developed robust neutralizing antibody responses after a single unadjuvanted dose of 1 to 5 μg. We further demonstrated complete protection against viremia and mortality after lethal challenge with WNVNY99, with no clinical or subclinical pathology observed in vaccinated animals. These data suggest that BinJ/WNVKUN-prME represents a safe and effective WNV vaccine candidate that warrants further investigation for use in humans or in veterinary applications.


2020 ◽  
Vol 14 (2) ◽  
pp. e0008034 ◽  
Author(s):  
Stefan Malafa ◽  
Iris Medits ◽  
Judith H. Aberle ◽  
Stephan W. Aberle ◽  
Denise Haslwanter ◽  
...  

2020 ◽  
Vol 94 (6) ◽  
Author(s):  
Qiu-Yan Zhang ◽  
Xiao-Feng Li ◽  
Xiaolin Niu ◽  
Na Li ◽  
Hong-Jiang Wang ◽  
...  

ABSTRACT Mosquito-borne flaviviruses consist of a positive-sense genome RNA flanked by the untranslated regions (UTRs). There is a panel of highly complex RNA structures in the UTRs with critical functions. For instance, Xrn1-resistant RNAs (xrRNAs) halt Xrn1 digestion, leading to the production of subgenomic flaviviral RNA (sfRNA). Conserved short direct repeats (DRs), also known as conserved sequences (CS) and repeated conserved sequences (RCS), have been identified as being among the RNA elements locating downstream of xrRNAs, but their biological function remains unknown. In this study, we revealed that the specific DRs are involved in the production of specific sfRNAs in both mammalian and mosquito cells. Biochemical assays and structural remodeling demonstrate that the base pairings in the stem of these DRs control sfRNA formation by maintaining the binding affinity of the corresponding xrRNAs to Xrn1. On the basis of these findings, we propose that DRs functions like a bracket holding the Xrn1-xrRNA complex for sfRNA formation. IMPORTANCE Flaviviruses include many important human pathogens. The production of subgenomic flaviviral RNAs (sfRNAs) is important for viral pathogenicity as a common feature of flaviviruses. sfRNAs are formed through the incomplete degradation of viral genomic RNA by the cytoplasmic 5ʹ–3ʹ exoribonuclease Xrn1 halted at the Xrn1-resistant RNA (xrRNA) structures within the 3ʹ-UTR. The 3ʹ-UTRs of the flavivirus genome also contain distinct short direct repeats (DRs), such as RCS3, CS3, RCS2, and CS2. However, the biological functions of these ancient primary DR sequences remain largely unknown. Here, we found that DR sequences are involved in sfRNA formation and viral virulence and provide novel targets for the rational design of live attenuated flavivirus vaccine.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Na Li ◽  
Ya-Nan Zhang ◽  
Cheng-Lin Deng ◽  
Pei-Yong Shi ◽  
Zhi-Ming Yuan ◽  
...  

ABSTRACTWe previously produced a replication-defective West Nile virus (WNV) lacking NS1 (WNV-ΔNS1) that could propagate at low levels (105infectious units [IU]/ml) in a 293T cell line expressing wild-type (WT) NS1. This finding indicates the potential of developing WNV-ΔNS1 as a noninfectious vaccine. To explore this idea, we developed an NS1-expressing Vero cell line (VeroNS1) that significantly improved the yield of WNV-ΔNS1 (108 IU/ml). We evaluated the safety and efficacy of WNV-ΔNS1 in mice. WNV-ΔNS1 appeared to be safe, as no replicative virus was found in naive Vero cells after continuous culturing of WNV-ΔNS1 in VeroNS1cells for 15 rounds. WNV-ΔNS1 was noninfectious in mice, even when IFNAR−/−mice were administered a high dose of WNV-ΔNS1. Vaccination with a single dose of WNV-ΔNS1 protected mice from a highly lethal challenge with WT WNV. The antibody response against WNV correlated well with the protection of vaccinated mice. Our study demonstrates the potential of the NS1transcomplementation system as a new platform for flavivirus vaccine development.IMPORTANCEMany flaviviruses are significant human pathogens that frequently cause outbreaks and epidemics around the world. Development of novel vaccine platforms against these pathogens is a public health priority. Using WNV as a model, we developed a new vaccine platform for flaviviruses. WNV containing a NS1 deletion (WNV-ΔNS1) could be efficientlytranscomplemented in Vero cells that constitutively expressed WT NS1 protein. A single-dose immunization with WNV-ΔNS1 elicited robust immune responses in mice. The immunized animals were fully protected against pathogenic WNV infection. No adverse effects related to the WNV-ΔNS1 vaccination were observed. The results have demonstrated the potential of the NS1 complementation system as an alternative platform for flavivirus vaccine development, especially for highly pathogenic flaviviruses.


Sign in / Sign up

Export Citation Format

Share Document