scholarly journals Subcellular Dynamic Immunopatterning of Cytosolic Protein Complexes on Microstructured Polymer Substrates

ACS Sensors ◽  
2021 ◽  
Author(s):  
Roland Hager ◽  
Ulrike Müller ◽  
Nicole Ollinger ◽  
Julian Weghuber ◽  
Peter Lanzerstorfer
2021 ◽  
Author(s):  
Roland Hager ◽  
Ulrike Mueller ◽  
Nicole Ollinger ◽  
Julian Weghuber ◽  
Peter Lanzerstorfer

Analysis of protein-protein interactions in living cells by protein micropatterning is currently limited to the spatial arrangement of transmembrane proteins and their corresponding downstream molecules. Here we present a robust method for visual immunoprecipitation of cytosolic protein complexes by use of an artificial transmembrane bait construct in combination with micropatterned antibody arrays on cyclic olefin polymer (COP) substrates. The method was used to characterize Grb2-mediated signalling pathways downstream the epidermal growth factor receptor (EGFR). Ternary protein complexes (Shc1:Grb2:SOS1 and Grb2:Gab1:PI3K) were identified and we found that EGFR downstream signalling is based on constitutively bound (Grb2:SOS1 and Grb2:Gab1) as well as on agonist-dependent protein associations with transient interaction properties (Grb2:Shc1 and Grb2:PI3K). Spatiotemporal analysis further revealed significant differences in stability and exchange kinetics of protein interactions. Furthermore, we could show that this approach is well suited to study the efficacy and specificity of SH2 and SH3 protein domain inhibitors in a live cell context. Altogether, this method represents a significant enhancement of quantitative subcellular micropatterning approaches as an alternative to standard biochemical analyses.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nikola Smatlik ◽  
Stefan Karl Drexler ◽  
Marc Burian ◽  
Martin Röcken ◽  
Amir Sadegh Yazdi

Chronic UV irradiation results in many changes in the skin, including hyperplasia, changes in dermal structures, and alteration of pigmentation. Exposure to UVB leads to cutaneous damage, which results in inflammation characterized by increased NF-κB activation and the induction of inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin- (IL-) 1, or IL-8. IL-1 secretion is the result of inflammasome activation which is besides apoptosis, a result of acute UVB treatment. Inflammasomes are cytosolic protein complexes whose formation results in the activation of proinflammatory caspase-1. Key substrates of caspase-1 are IL-1β and IL-18, and the cytosolic protein gasdermin D (GSDMD), which is involved in inflammatory cell death. Here, we demonstrate that UVB-induced inflammasome activation leads to the formation of ASC specks. Our findings show that UVB provokes ASC speck formation in human primary keratinocytes prior to cell death, and that specks are, opposed to the perinuclear cytosolic localization in myeloid cells, formed in the nucleus. Additionally, we showed by RNAi that NLRP1 and not NLRP3 is the major inflammasome responsible for UVB sensing in primary human keratinocytes. Formation of ASC specks indicates inflammasome assembly and activation as their formation in hPKs depends on the presence of NLRP1 and partially on NLRP3. Nuclear ASC specks are not specific for NLRP1/NLRP3 inflammasome activation, as the activation of the AIM2 inflammasome by cytosolic DNA results in ASC specks too. These nuclear ASC specks putatively link cell death to inflammasome activation, possibly by binding of IFI16 (gamma-interferon-inducible protein) to ASC. ASC can interact upon UVB sensing via IFI16 with p53, linking cell death to ASC speck formation.


Nano Letters ◽  
2015 ◽  
Vol 15 (5) ◽  
pp. 3610-3615 ◽  
Author(s):  
Tim Wedeking ◽  
Sara Löchte ◽  
Christian P. Richter ◽  
Maniraj Bhagawati ◽  
Jacob Piehler ◽  
...  

Author(s):  
E. H. Egelman ◽  
X. Yu

The RecA protein of E. coli has been shown to mediate genetic recombination, regulate its own synthesis, control the expression of other genes, act as a specific protease, form a helical polymer and have an ATPase activity, among other observed properties. The unusual filament formed by the RecA protein on DNA has not previously been shown to exist outside of bacteria. Within this filament, the 36 Å pitch of B-form DNA is extended to about 95 Å, the pitch of the RecA helix. We have now establishedthat similar nucleo-protein complexes are formed by bacteriophage and yeast proteins, and availableevidence suggests that this structure is universal across all of biology, including humans. Thus, understanding the function of the RecA protein will reveal basic mechanisms, in existence inall organisms, that are at the foundation of general genetic recombination and repair.Recombination at this moment is assuming an importance far greater than just pure biology. The association between chromosomal rearrangements and neoplasms has become stronger and stronger, and these rearrangements are most likely products of the recombinatory apparatus of the normal cell. Further, damage to DNA appears to be a major cause of cancer.


Author(s):  
C.A. Mannella ◽  
K.F. Buttle ◽  
K.A. O‘Farrell ◽  
A. Leith ◽  
M. Marko

Early transmission electron microscopy of plastic-embedded, thin-sectioned mitochondria indicated that there are numerous junctions between the outer and inner membranes of this organelle. More recent studies have suggested that the mitochondrial membrane contacts may be the site of protein complexes engaged in specialized functions, e.g., import of mitochondrial precursor proteins, adenine nucleotide channeling, and even intermembrane signalling. It has been suggested that the intermembrane contacts may be sites of membrane fusion involving non-bilayer lipid domains in the two membranes. However, despite growing interest in the nature and function of intramitochondrial contact sites, little is known about their structure.We are using electron microscopic tomography with the Albany HVEM to determine the internal organization of mitochondria. We have reconstructed a 0.6-μm section through an isolated, plasticembedded rat-liver mitochondrion by combining 123 projections collected by tilting (+/- 70°) around two perpendicular tilt axes. The resulting 3-D image has confirmed the basic inner-membrane organization inferred from lower-resolution reconstructions obtained from single-axis tomography.


Author(s):  
L. T. Germinario ◽  
J. Blackwell ◽  
J. Frank

This report describes the use of digital correlation and averaging methods 1,2 for the reconstruction of high dose electron micrographs of the chitin-protein complex from Megarhyssa ovipositor. Electron microscopy of uranyl acetate stained insect cuticle has demonstrated a hexagonal array of unstained chitin monofibrils, 2.4−3.0 nm in diameter, in a stained protein matrix3,4. Optical diffraction Indicated a hexagonal lattice with a = 5.1-8.3 nm3 A particularly well ordered complex is found in the ovipositor of the ichneumon fly Megarhyssa: the small angle x-ray data gives a = 7.25 nm, and the wide angle pattern shows that the protein consists of subunits arranged in a 61 helix, with an axial repeat of 3.06 nm5.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2016 ◽  
pp. 126-129
Author(s):  
M. Makarenko ◽  
◽  
D. Hovsyeyev ◽  
L. Sydoryk ◽  
◽  
...  

Different kinds of physiological stress cause mass changes in the cells, including the changes in the structure and function of the protein complexes and in separate molecules. The protein functions is determined by its folding (the spatial conclusion), which depends on the functioning of proteins of thermal shock- molecular chaperons (HSPs) or depends on the stress proteins, that are high-conservative; specialized proteins that are responsible for the correct proteinaceous folding. The family of the molecular chaperones/ chaperonins/ Hsp60 has a special place due to the its unique properties of activating the signaling cascades through the system of Toll-like receptors; it also stimulates the cells to produce anti- inflammatory cytokines, defensins, molecules of cell adhesion and the molecules of MHC; it functions as the intercellular signaling molecule. The pathological role of Hsp60 is established in a wide range of illnesses, from diabetes to atherosclerosis, where Hsp60 takes part in the regulation of both apoptosis and the autoimmune processes. The presence of the HSPs was found in different tissues that are related to the reproductive system. Key words: molecular chaperons (HSPs), Toll-like receptors, reproductive function, natural auto antibody.


2002 ◽  
Vol 75 (6) ◽  
pp. 613 ◽  
Author(s):  
Stefano Santabarbara ◽  
Ilaria Cazzalini ◽  
Andrea Rivadossi ◽  
Flavio M. Garlaschi ◽  
Giuseppe Zucchelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document