lung disease severity
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 22)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Julia Mercier ◽  
Claire Calmel ◽  
Julie Mésinèle ◽  
Erika Sutanto ◽  
Fatiha Merabtene ◽  
...  

Abstract Cystic fibrosis (CF), due to variants in CFTR gene, is associated with chronic infection/inflammation responsible for airway epithelium alteration and lung function decline. Modifier genes induce phenotype variability between people with CF (pwCF) carrying the same CFTR variants. Among these, the gene encoding for the amino acid transporter SLC6A14 has been associated with lung disease severity and age of primary airway infection by the bacteria Pseudomonas aeruginosa. In this study, we investigated whether the single nucleotide polymorphism (SNP) rs3788766, located within SLC6A14 promoter, is associated with lung disease severity in a large French cohort of pwCF. We also studied the consequences of this SNP on SLC6A14 promoter activity using a luciferase reporter and the role of SLC6A14 in mammalian target of rapamycin (mTOR) signaling pathway and airway epithelial repair. We confirm that SLC6A14 rs3788766 SNP is associated with lung disease severity in pwCF (p=0.020; n=3,257, pancreatic insufficient, aged 6 to 40 years old), with the minor allele G being deleterious. In bronchial epithelial cell lines deficient for CFTR, SLC6A14 promoter activity is reduced in the presence of the rs3788766 G allele. SLC6A14 inhibition with a specific pharmacological blocker reduced 3H-arginine transport, mTOR phosphorylation and bronchial epithelial repair rates in wound healing assays. To conclude, our study highlights that SLC6A14 genotype might affect lung disease severity of people with cystic fibrosis via mTOR and epithelial repair mechanisms modulation in the lung.


Autoimmunity ◽  
2022 ◽  
pp. 1-9
Author(s):  
Rachel W. Linnemann ◽  
Ruchi Yadav ◽  
Chao Zhang ◽  
Demba Sarr ◽  
Balázs Rada ◽  
...  

Author(s):  
Phillip Pattie ◽  
Sarath Ranganathan ◽  
Joanne Harrison ◽  
Suzanna Vidmar ◽  
Graham L Hall ◽  
...  

2021 ◽  
Author(s):  
Morteza M Saber ◽  
Jannik Donner ◽  
Inès Levade ◽  
Nicole Acosta ◽  
Michael D Perkins ◽  
...  

Complex polymicrobial communities inhabit the lungs of individuals with cystic fibrosis (CF) and contribute to the decline in lung function. However, the severity of lung disease and its progression in CF patients are highly variable and imperfectly predicted by host clinical factors at baseline, CFTR mutations in the host genome, or sputum polymicrobial community variation. The opportunistic pathogen Pseudomonas aeruginosa (Pa) dominates airway infections in the majority of CF adults. Here we hypothesized that genetic variation within Pa populations would be predictive of lung disease severity. To quantify Pa genetic variation within whole CF sputum samples, we used deep amplicon sequencing on a newly developed custom Ion AmpliSeq panel of 209 Pa genes previously associated with the host pathoadaptation and pathogenesis of CF infection. We trained machine learning models using Pa single nucleotide variants (SNVs), clinical and microbiome diversity data to classify lung disease severity at the time of sputum sampling, and to predict future lung function decline over five years in a cohort of 54 adult CF patients with chronic Pa infection. The models using Pa SNVs alone classified baseline lung disease with good sensitivity and specificity, with an area under the receiver operating characteristic curve (AUROC) of 0.87. While the models were less predictive of future lung function decline, they still achieved an AUROC of 0.74. The addition of clinical data to the models, but not microbiome community data, yielded modest improvements (baseline lung function: AUROC=0.92; lung function decline: AUROC=0.79), highlighting the predictive value of the AmpliSeq data. Together, our work provides a proof-of-principle that Pa genetic variation in sputum is strongly associated with baseline lung disease, moderately predicts future lung function decline, and provides insight into the pathobiology of Pa's effect on CF.


2021 ◽  
Author(s):  
Julia Mercier ◽  
Claire Calmel ◽  
Julie Mésinèle ◽  
Erika Sutanto ◽  
Fatiha Merabtene ◽  
...  

Abstract Cystic fibrosis (CF), due to variants in CFTR gene, is associated with chronic infection/inflammation responsible for airway epithelium alteration and lung function decline. Modifier genes induce phenotype variability between people with CF (pwCF) carrying the same CFTR variants. Among these, the gene encoding for the amino acid transporter SLC6A14 has been associated with lung disease severity and age of primary airway infection by the bacteria Pseudomonas aeruginosa. In this study, we investigated whether the single nucleotide polymorphism (SNP) rs3788766, located within SLC6A14 promoter, is associated with lung disease severity in a large French cohort of pwCF. We also studied the consequences of this SNP on SLC6A14 promoter activity using a luciferase reporter and the role of SLC6A14 in mammalian target of rapamycin (mTOR) signaling pathway and airway epithelial repair. We confirm that SLC6A14 SNP rs3788766 is associated with lung disease severity in pwCF (p=0.020; n=3,257, pancreatic insufficient, aged 6 to 40 years old), with the minor allele G being deleterious. In bronchial epithelial cell lines deficient for CFTR, SLC6A14 promoter activity is reduced in the presence of the rs3788766 G allele. SLC6A14 inhibition with a specific pharmacological blocker reduced 3H-arginine transport, mTOR phosphorylation and bronchial epithelial repair rates in wound healing assays. To conclude, our study highlights that SLC6A14 genotype might affect lung disease severity of people with cystic fibrosis via mTOR and epithelial repair mechanisms modulation in the lung.


2021 ◽  
Author(s):  
Julia Mercier ◽  
Claire Calmel ◽  
Julie Mésinèle ◽  
Erika Sutanto ◽  
Fatiha Merabtene ◽  
...  

Abstract Cystic fibrosis (CF), due to variants in CFTR gene, is associated with chronic infection/inflammation responsible for airway epithelium alteration and lung function decline. Modifier genes induce phenotype variability between people with CF (pwCF) carrying the same CFTR variants. Among these, the gene encoding for the amino acid transporter SLC6A14 has been associated with lung disease severity and age of primary airway infection by the bacteria Pseudomonas aeruginosa. In this study, we investigated whether the single nucleotide polymorphism (SNP) rs3788766, located within SLC6A14 promoter, is associated with lung disease severity in a large French cohort of pwCF. We also studied the consequences of this SNP on SLC6A14 promoter activity and the role of SLC6A14 in mammalian target of rapamycin (mTOR) signaling pathway and airway epithelial repair. We confirm that SLC6A14 SNP rs3788766 is associated with lung disease severity in pwCF (p=0.020; n=3,257, pancreatic insufficient, aged 6 to 40 years old), with the minor allele G being deleterious. In bronchial epithelial cell lines deficient for CFTR, SLC6A14 promoter activity is reduced in the presence of the rs3788766 G allele. SLC6A14 inhibition with a specific pharmacological blocker reduced 3H-arginine transport, mTOR phosphorylation and bronchial epithelial repair rates in wound healing assays. In conclusion, SLC6A14 rs3788766 G allele is associated with lower lung function in pwCF. SLC6A14, whose transcriptional promoter activity varies according to rs3788766 genotype, is involved in mTOR signaling and bronchial epithelial repair. This study suggests that SLC6A14 might influence CF lung phenotype via mTOR and epithelial repair mechanisms modulation.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 441
Author(s):  
Fanny Pineau ◽  
Davide Caimmi ◽  
Sylvie Taviaux ◽  
Maurane Reveil ◽  
Laura Brosseau ◽  
...  

Cystic fibrosis (CF) is a chronic genetic disease that mainly affects the respiratory and gastrointestinal systems. No curative treatments are available, but the follow-up in specialized centers has greatly improved the patient life expectancy. Robust biomarkers are required to monitor the disease, guide treatments, stratify patients, and provide outcome measures in clinical trials. In the present study, we outline a strategy to select putative DNA methylation biomarkers of lung disease severity in cystic fibrosis patients. In the discovery step, we selected seven potential biomarkers using a genome-wide DNA methylation dataset that we generated in nasal epithelial samples from the MethylCF cohort. In the replication step, we assessed the same biomarkers using sputum cell samples from the MethylBiomark cohort. Of interest, DNA methylation at the cg11702988 site (ATP11A gene) positively correlated with lung function and BMI, and negatively correlated with lung disease severity, P. aeruginosa chronic infection, and the number of exacerbations. These results were replicated in prospective sputum samples collected at four time points within an 18-month period and longitudinally. To conclude, (i) we identified a DNA methylation biomarker that correlates with CF severity, (ii) we provided a method to easily assess this biomarker, and (iii) we carried out the first longitudinal analysis of DNA methylation in CF patients. This new epigenetic biomarker could be used to stratify CF patients in clinical trials.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-214659 ◽  
Author(s):  
Benjamin Stoecklin ◽  
Y Jane Choi ◽  
Abhijeet Rakshasbhuvankar ◽  
Jenny Svedenkrans ◽  
Gareth Jones ◽  
...  

IntroductionWe aimed to develop and validate a prediction table for a simplified measure of rightward shift of the fetal oxyhaemoglobin saturation (SpO2) versus inspired oxygen pressure (PIO2) curve as an objective marker of lung disease severity in very preterm infants, independent of unit altitude or oxygen prescribing policies.MethodsVery preterm infants (n=219) had an oxygen reduction test at median (IQR) test age of 354 (345–360) weeks’ postmenstrual age (PMA). Shift was derived from at least three paired SpO2 versus PIO2 measurements using a computer algorithm, using the fetal oxyhaemoglobin dissociation curve as the reference. Linear regression of resultant shift values enabled construction of a table to predict shift using a single paired SpO2 versus PIO2 measurement, validated subsequently in a separate infant cohort using Bland-Altman analysis. Receiver operating curve analysis provided threshold values equating to a clinical diagnosis of mild bronchopulmonary dysplasia (BPD) or moderate to severe BPD.ResultsThe median (IQR) age of 63 infants in the validation cohort was 360 (356–362) weeks’ PMA. Mean difference (95% CI) between predicted and measured shift was 2.1 (−0.8% to 4.9%) with wide limits of agreement (−20.7% to 24.8%). Predicted shift >10.1 kPa identified mild BPD with 71% sensitivity and 88% specificity while values>13.0 kPa identified moderate to severe BPD with 81% sensitivity and 100% specificity.DiscussionShift predicted from a single paired SpO2 versus PIO2 measurement using our validated table enables objective bedside screening of lung disease severity in very preterm infant cohorts at 36 weeks’ PMA.


Sign in / Sign up

Export Citation Format

Share Document