scholarly journals Prediction of Surface Temperature and CO2 Emission using a novel grey system model

Author(s):  
Pawan Kumar Singh ◽  
Alok Kumar Pandey ◽  
Anushka Chouhan

Abstract The increase in surface temperature and CO2 emissions are two of the most important issues in climate studies and global warming. The ‘Global Emissions 2021’ report identifies the six biggest contributors to CO2­ emissions; China, USA, India, Russia, Japan, and Germany. The current study projects the increase in surface temperature and the CO­2 emissions of these six countries by 2028. The EGM (1,1,α,θ) grey model is an even form of the model with a first order differential equation, that has one variable and a weightage background value that contains conformable fractional accumulation. The results show that while the CO2 emissions for Japan, Germany, USA and Russia show a downward projection, they are expected to increase in India and remain nearly constant in China by 2028. The surface temperature has been projected to increase at a significant rate in all these countries. By comparing with the EGM (1,1) grey model, the results show that the EGM (1,1, α, θ) model performs better in both in-sample and out-of-sample forecasting. The paper also puts forward some policy suggestions to mitigate, manage and reduce increases in surface temperature as well as CO2 emissions.

2013 ◽  
Vol 671-674 ◽  
pp. 3-9 ◽  
Author(s):  
Cheng Hua Wang ◽  
Mei Na Zhang

An improved grey system model GM(1,1) was proposed in this paper, considered that the large difference between predicted results and measured load-settlement relationship results of bored piles, in which the prediction results were given by the original theory. The complete and incomplete load-settlement curves from pile loading tests were fitted and predicated by the improved grey model. The results calculated with empirical equations or methods in technical code for building pile foundations were compared with those predicted with the improved grey model. Analysis of a case study showed that the results predicted by the improved grey theory model GM(1,1) had higher precision, which demostrated that this improved theory was of significance in engineering practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yubin Cai ◽  
Xin Ma ◽  
Wenqing Wu ◽  
Yanqiao Deng

Natural gas is one of the main energy resources for electricity generation. Reliable forecasting is vital to make sensible policies. A randomly optimized fractional grey system model is developed in this work to forecast the natural gas consumption in the power sector of the United States. The nonhomogeneous grey model with fractional-order accumulation is introduced along with discussions between other existing grey models. A random search optimization scheme is then introduced to optimize the nonlinear parameter of the grey model. And the complete forecasting scheme is built based on the rolling mechanism. The case study is executed based on the updated data set of natural gas consumption of the power sector in the United States. The comparison of results is analyzed from different step sizes, different grey system models, and benchmark models. They all show that the proposed method has significant advantages over the other existing methods, which indicates the proposed method has high potential in short-term forecasting for natural gas consumption of the power sector in United States.


2012 ◽  
Vol 605-607 ◽  
pp. 2027-2030
Author(s):  
Shen Li Chen ◽  
Dun Ying Shu

This paper proposes a new application to predict the anomalous threshold voltage (Vth) behavior in submicron MOSFETs by using the GM(1,1) grey system model. It can be developed to analyze the threshold voltage inclination due to the device geometric effects. The prediction results are compared with experiment data obtained from actual devices, we found that the different value of real experiment data and estimation data from the GM(1,1) is small and a good agreement has been obtained.


2019 ◽  
Vol 10 (9) ◽  
pp. 852-860
Author(s):  
Mahmoud Elsayed ◽  
◽  
Amr Soliman ◽  

Grey system theory is a mathematical technique used to predict data with known and unknown characteristics. The aim of our research is to forecast the future amount of technical reserves (outstanding claims reserve, loss ratio fluctuations reserve and unearned premiums reserve) up to 2029/2030. This study applies the Grey Model GM(1,1) using data obtained from the Egyptian Financial Supervisory Authority (EFSA) over the period from 2005/2006 to 2015/2016 for non-life Egyptian insurance market. We found that the predicted amounts of outstanding claims reserve and loss ratio fluctuations reserve are highly significant than the unearned premiums reserve according to the value of Posterior Error Ratio (PER).


Author(s):  
Elvis Twumasi ◽  
Emmanuel Asuming Frimpong ◽  
Daniel Kwegyir ◽  
Denis Folitse

Following publication of the original article [1], the authors reported an error in the title and body text.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Che-Jung Chang ◽  
Der-Chiang Li ◽  
Wen-Li Dai ◽  
Chien-Chih Chen

The wafer-level packaging process is an important technology used in semiconductor manufacturing, and how to effectively control this manufacturing system is thus an important issue for packaging firms. One way to aid in this process is to use a forecasting tool. However, the number of observations collected in the early stages of this process is usually too few to use with traditional forecasting techniques, and thus inaccurate results are obtained. One potential solution to this problem is the use of grey system theory, with its feature of small dataset modeling. This study thus uses the AGM(1,1) grey model to solve the problem of forecasting in the pilot run stage of the packaging process. The experimental results show that the grey approach is an appropriate and effective forecasting tool for use with small datasets and that it can be applied to improve the wafer-level packaging process.


2000 ◽  
Vol 15 (28) ◽  
pp. 4477-4498 ◽  
Author(s):  
P. M. LLATAS ◽  
A. V. RAMALLO ◽  
J. M. SÁNCHEZ DE SANTOS

We analyze the world volume solitons of a D3-brane probe in the background of parallel (p, q) five-branes. The D3-brane is embedded along the directions transverse to the five-branes of the background. By using the S duality invariance of the D3-brane, we find a first-order differential equation whose solutions saturate an energy bound. The SO(3) invariant solutions of this equation are found analytically. They represent world volume solitons which can be interpreted as formed by parallel (-q, p) strings emanating from the D3-brane world volume. It is shown that these configurations are 1/4 supersymmetric and provide a world volume realization of the Hanany–Witten effect.


Sign in / Sign up

Export Citation Format

Share Document