scholarly journals The fluvial architecture of buried floodplain sediments of the Weiße Elster River (Germany) revealed by a novel method combination of drill cores with two‐dimensional and spatially resolved geophysical measurements

Author(s):  
H. Suchodoletz ◽  
M. Pohle ◽  
A. Khosravichenar ◽  
M. Ulrich ◽  
M. Hein ◽  
...  

2021 ◽  
Author(s):  
Hans von Suchodoletz ◽  
Christoph Zielhofer ◽  
Mathias Ulrich ◽  
Azra Khosravichenar ◽  
Jan Miera ◽  
...  

<p>Fluvial sediments are valuable archives of late Quaternary landscape evolution, paleoenvironmental changes and human-environmental interactions. However, given their complex and non-linear character their correct interpretation requires a good understanding of the fluvial architecture. The fluvial architecture describes the spatial arrangement and genetic interconnectedness of different types of fluvial sediments in a floodplain such as channel and overbank deposits. To properly map the different fluvial forms, their variations in composition and geometry must be understood in three dimensions. However, whereas investigations of the fluvial architecture are relatively easy in cohesive floodplain types with incised channel beds and large natural exposures, these are challenging in floodplains with buried stratigraphies where artificial exposures or corings are required.</p><p>We studied three cross sections through the floodplain of the middle and upper course of the Weiße Elster River in Central Germany by means of geophysical Electrical Resistivity Measurements (ERT) and closely spaced drillings. These 2D investigations were complemented by spatial geophysical 3D measurements of Electromagnetic Induction (EMI) in the surrounding areas of the cross sections. The latter technique allows fast mapping of larger areas, and was only rarely applied to fluvial systems so far. Our novel and cost-effective combination of core drillings with multidimensional geophysical measurements allowed to systematically reconstruct the fluvial architecture of larger areas of the Weiße Elster floodplain with high resolution, and thereby demonstrates its high value for fluvial geomorphology. Furthermore, in combination with ongoing numerical datings of the fluvial sediments these investigations form the base for precise conclusions about possible climatic and human drivers of the Holocene fluvial dynamics of the Weiße Elster River.</p>



AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 909-912
Author(s):  
Ronald J. Epstein ◽  
John A. Rule ◽  
Donald B. Bliss


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoshi Masuyama ◽  
Tomoaki Higo ◽  
Jong-Kook Lee ◽  
Ryohei Matsuura ◽  
Ian Jones ◽  
...  

AbstractIn contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.



Author(s):  
Wenjing Ji ◽  
Guojie Zhao ◽  
Cong Guo ◽  
Li Fan ◽  
Hua Deng ◽  
...  
Keyword(s):  


Author(s):  
Gundula Wolf ◽  
Jonas S. Almeida ◽  
Carmen Pinheiro ◽  
Vasco Correia ◽  
Carla Rodrigues ◽  
...  


2022 ◽  
Vol 17 (01) ◽  
pp. C01025
Author(s):  
B. Bergmann ◽  
P. Smolyanskiy ◽  
P. Burian ◽  
S. Pospisil

Abstract In the present work, we study the Timepix2 pixels’ high energy response in the so-called adaptive gain mode. Therefore, Timepix2 with a 500 μm thick silicon sensor was irradiated with protons of energies in the range from 400 keV to 2 MeV and α-particles of 5.5 MeV from 241Am. A novel method was developed to determine the energy deposit in single pixels of particle imprints, which are spread out over a set of neighbor pixels (cluster). We show that each pixel is capable of measuring the deposited energy from 4 keV up to ∼3.2 MeV. Reconstructing the full energy content of the clusters, we found relative energy resolutions ( σ E ) better than 2.7% and better than 4% for proton and α-particle data, respectively. In a simple experiment with a 5.5 MeV α-particle source, we demonstrate that energy losses in thin (organic) specimen can be spatially resolved, mapping out sample thickness variations, with a resolution around 1–2 μm, across the sensor area. The inherent spatial resolution of the device was determined to be 350 nm in the best case.



2018 ◽  
Vol 14 (S345) ◽  
pp. 250-251
Author(s):  
Maria Giulia Ubeira Gabellini ◽  
Mario E. van den Ancker ◽  
Davide Fedele ◽  
Giuseppe Lodato ◽  
Carlo Felice Manara

AbstractUsing a novel method for speckle noise suppression from SPHERE-IFS data, we performed a systematic survey for disks in 22 Herbig Ae/Be stars, spatially resolving five disks and detecting seven new companion candidates. The fraction of sources with spatially resolved disks is systematically higher in the Meeus et al. (2001) group I sources, showing that disks are indeed more easily seen in scattered light in this sub-class of Herbig stars, consistent with the interpretation of group I sources having large gaps in their disks.



Sign in / Sign up

Export Citation Format

Share Document