scholarly journals Index Properties, Hydraulic Conductivity and Contaminant-Compatibility of CMC-Treated Sodium Activated Calcium Bentonite

Author(s):  
Ri-Dong Fan ◽  
Krishna R. Reddy ◽  
Yu-Ling Yang ◽  
Yan-Jun Du

A typical sodium activated calcium bentonite (SACaB) was treated with carboxymethyl cellulose (CMC) polymer, called CMC-treated SACaB (CMC-SACaB), and it was investigated for its hydraulic conductivity and enhanced chemical compatibility. Index property and hydraulic conductivity tests were conducted on CMC-SACaB and SACaB with deionized water (DIW), heavy metals-laden water, and actual landfill leachate. Lead-zinc mixed (Pb-Zn) solution and hexavalent chromium (Cr(VI)) solution were selected as target heavy metals-laden water, and calcium (Ca) solution was tested for comparison purposes. The hydraulic conductivity (kMFL) was determined via the modified fluid loss (MFL) test. Liquid limit and swell index in DIW, heavy metal-laden water, and Ca solution increased with increasing CMC content. CMC treatment effectively decreased the kMFL of SACaB when exposed to Pb-Zn solutions with a metal concentration of 1 to 20 mmol/L and landfill leachate. An insignificant change in kMFL of CMC-SACaB occurred with exposure to Pb-Zn solutions with metal concentrations of 1 to 10 mmol/L, Cr(VI) and Ca solutions with metal concentration of 1 to 20 mmol/L, and landfill leachate. A slight increase in kMFL of CMC-SACaB was observed when Pb-Zn concentration increased to 20 mmol/L, and such an increment was more noticeable when the CMC content was lower than 10%. In the DIW, the measured kMFL values of CMC-SACaB and SACaB with a given range of void ratio were consistent with those obtained from the flexible-wall permeameter test.

1996 ◽  
Vol 31 (1) ◽  
pp. 65-84 ◽  
Author(s):  
Mostafa A. Warith

Abstract This study investigated the suitability of using peat as a filtering medium, capable of long-term attenuation of hazardous chemicals, such as heavy metals and organic compounds, which are usually present in landfill leachate. In addition, this study focused on establishing the necessary parameters required for the design of a peat filter which will offer a pretreatment to the migrating landfill leachate before its release to the environment. The experimental program was designed to establish the suitability of peat as an effective filtering media. It included the determination of adsorption isotherms, migration profiles and breakthrough characteristics of various species. The adsorption isotherms were established using a batch study, while the migration profiles and breakthrough characteristics were determined using continuous flow permeating through peat leaching columns. The leaching column study was carried out to simulate the continuous flow of leachate that would occur in the proposed peat filter. Lead, zinc, calcium, sodium and organic matter measured as BOD were examined. Batch and continuous flow tests demonstrated the effectiveness of peat to attenuate heavy metals and other contaminants.


2014 ◽  
Vol 51 (2) ◽  
pp. 158-163 ◽  
Author(s):  
Yang Liu ◽  
Will P. Gates ◽  
Abdelmalek Bouazza ◽  
R. Kerry Rowe

This study investigates the performance of bentonite components of geosynthetic clay liners (GCLs) when exposed to aggressive leachates using the fluid loss test and provides a possible quick method for estimating the effect of acidic conditions on hydraulic conductivity. Fluid loss generally increases with increasing acid concentrations. Hydraulic conductivity values back-calculated from the fluid loss tests (kFL) are compared with the values measured using a flexible-wall permeameter (kTri). Generally, the predicted hydraulic conductivity values are conservative (kFL/kTri > 1) under water and low acid concentrations (≤0.015 mol/L). However, the back-calculated hydraulic conductivity is shown to be nonconservative (kFL/kTri < 1) at high acid concentrations (≥0.125 mol/L).


2019 ◽  
Vol 258 ◽  
pp. 01021 ◽  
Author(s):  
Khairul Anam Moktar ◽  
Ramlah Mohd Tajuddin

Landfill leachate has many toxic substances, which may adversely affect the environmental health. The high concentration of heavy metal in landfill leachate creates complication to its removal and management. Hence this research was conducted to explore the ability of phytoremediation using Imperata cylindrica to remove Lead, Zinc and Cadmium; which is deemed to be nature friendly and sustainable. Raw landfill leachates were taken from the collection ponds at Jeram Sanitary Landfill and placed in fabricated phytoremediation system at UiTM laboratory. Heavy metal concentration of leachate from this system was monitored for 30 days. It was found that Imperata cylindrica is able to remove lead, Zinc and Cadmium from the leachate.


1999 ◽  
Vol 39 (2) ◽  
pp. 201-208 ◽  
Author(s):  
C. Dierkes ◽  
W. F. Geiger

Runoff from highways contains significant loads of heavy metals and hydrocarbons. According to German regulations, it should be infiltrated over embankments to support groundwater-recharge. To investigate the decontaminating effect of greened embankments, soil-monoliths from highways with high traffic densities were taken. Soils were analyzed to characterize the contamination in relation to distance and depth for lead, zinc, copper, cadmium, PAH and MOTH. Lysimeters were charged in the field and laboratory with highway runoff to study the effluents under defined conditions. Concentrations of pollutants in roadside soils depend on the age of embankments and traffic density. Highest concentrations were found in the upper 5 cm of the soil and within a distance of up to two metres from the street. Concentrations of most pollutants decreased rapidly with depth and distance. Lead and cadmium could not be detected in lysimeter effluent. Zinc and copper were found in concentrations that did not exceed drinking water quality limits.


2021 ◽  
Vol 11 (11) ◽  
pp. 5009
Author(s):  
Mayk Teles de Oliveira ◽  
Ieda Maria Sapateiro Torres ◽  
Humberto Ruggeri ◽  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
...  

Sanitary landfill leachate (LL) composition varies according to climate variables variation, solid waste characteristics and composition, and landfill age. Leachate treatment is essentially carried out trough biological and physicochemical processes, which have showed variability in efficiency and appear a costly solution for the management authorities. Electrocoagulation (EC) seems a suitable solution for leachate treatment taking into account the characteristics of the liquor. One of the problems of EC is the electrode passivation, which affects the longevity of the process. One solution to this problem could be the replacement of the electrode by one made of recyclable material, which would make it possible to change it frequently and at a lower cost. The objective of the present work was to evaluate the removal of heavy metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn) and coliforms from a LL by EC using electrodes made from steel swarf (SfE) up to 8 h. Removal efficiencies of detected heavy metals were 51%(Cr), 59%(As), 71%(Cd), 72%(Zn), 92%(Ba), 95%(Ni) and >99%(Pb). The microbial load of coliforms in leachate was reduced from 10.76 × 104 CFU/mL (raw leachate) to less than 1 CFU/mL (after treatment with SfE) (i.e., approximately 100% reduction). The use of SfE in EC of LL is very effective in removing heavy metals and coliforms and can be used as alternative treatment solution for such effluents.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Fauzul Imron ◽  
Setyo Budi Kurniawan ◽  
Siti Rozaimah Sheikh Abdullah

AbstractLeachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was > 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and >  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was > 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was > 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was > 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.


2008 ◽  
Vol 37 (4) ◽  
Author(s):  
Mirosław Skorbiłowicz ◽  
Elżbieta Skorbiłowicz

The distribution of lead, zinc, and chromium in fractions of bottom sediments in the Narew River and its tributariesThe purpose of the paper was to evaluate the distribution of lead, zinc and chromium contents in different grain fractions of bottom sediments in the Narew River and some of its tributaries. This study also aimed to determine which fractions are mostly responsible for bottom sediment pollution. The studies of the Narew and its tributaries (the Supraśl, Narewka, and Orlanka) were conducted in September 2005 in the upper Narew catchment area. The analyzed bottom sediments differed regarding grain size distribution. The studies revealed the influence of the percentage of particular grain fractions present on the accumulation of heavy metals in all bottom sediments.


Sign in / Sign up

Export Citation Format

Share Document