nephrotoxic serum nephritis
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 9)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 10 (4) ◽  
pp. 832
Author(s):  
Ida Aringer ◽  
Katharina Artinger ◽  
Corinna Schabhüttl ◽  
Thomas Bärnthaler ◽  
Agnes A. Mooslechner ◽  
...  

Selectively targeting the E-type prostanoid receptor 4 (EP4) might be a new therapeutic option in the treatment of glomerulonephritis (GN), since the EP4 receptor is expressed on different immune cells, resident kidney cells, and endothelial cells, which are all involved in the pathogenesis of immune-complex GN. This study aimed to evaluate the therapeutic potential and to understand the mode of action of EP4 agonist in immune-complex GN using the murine model of nephrotoxic serum nephritis (NTS). In vivo, NTS mice were treated two times daily with two different doses of an EP4 agonist ONO AE1-329 or vehicle for 14 days total. The effect of PGE2 and EP4 agonism and antagonism was tested on murine distal convoluted tubular epithelial cells (DCT) in vitro. In vivo, the higher dose of the EP4 agonist led to an improved NTS phenotype, including a reduced tubular injury score and reduced neutrophil gelatinase-associated lipocalin (NGAL) and blood urea nitrogen (BUN) levels. EP4 agonist treatment caused decreased CD4+ T cell infiltration into the kidney and increased proliferative capacity of tubular cells. Injection of the EP4 agonist resulted in dose-dependent vasodilation and hypotensive episodes. The low-dose EP4 agonist treatment resulted in less pronounced episodes of hypotension. In vitro, EP4 agonism resulted in cAMP production and increased distal convoluted tubular (DCT) proliferation. Taken together, EP4 agonism improved the NTS phenotype by various mechanisms, including reduced blood pressure, decreased CD4+ T cell infiltration, and a direct effect on tubular cells leading to increased proliferation probably by increasing cAMP levels.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0241053
Author(s):  
Chia-Yu Lin ◽  
Jen-Ai Lee ◽  
Po-Yeh Lin ◽  
Shih-Chun Hua ◽  
Pei-Yun Tsai ◽  
...  

2020 ◽  
Vol 190 (2) ◽  
pp. 400-411 ◽  
Author(s):  
Foteini Moschovaki Filippidou ◽  
Alexander H. Kirsch ◽  
Matthias Thelen ◽  
Máté Kétszeri ◽  
Katharina Artinger ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
pp. 391-406
Author(s):  
Nobuhiro Kanazawa ◽  
Masayuki Iyoda ◽  
Shohei Tachibana ◽  
Kei Matsumoto ◽  
Yukihiro Wada ◽  
...  

Background: Recombinant human soluble thrombomodulin (rhTM) was approved in 2008 and has been used for treatment of disseminated intravascular coagulation in Japan. The antifibrotic effects of rhTM in acute exacerbation of idiopathic pulmonary fibrosis are well established, but the therapeutic potential of rhTM in renal fibrosis remains poorly understood. Methods: Nephrotoxic serum nephritis (NTS-N) was induced in 22 female Wistar-Kyoto (WKY) rats on day 0. Rats were administered either rhTM or vehicle intraperitoneally, every day from day 4 to day 55. Rats were sacrificed on day 56 when renal fibrosis was established and renal morphological investigations were performed. In vitro, rat renal fibroblasts (NRK-49F) were pretreated with rhTM or saline, and expression levels of profibrogenic gene induced by thrombin were analyzed by real-time reverse transcription polymerase chain reaction. Results: Compared to WKY-GN-vehicle rats, the body weights of WKY-GN-rhTM rats were significantly greater on day 55. By day 56, rhTM had significantly reduced serum creatinine levels in NTS-N. On the other hand, urinary protein excretion was comparable between the two treatment groups throughout the study. The percentage of Masson trichrome-positive areas in WKY-GN-rhTM rats was significantly lower compared to that in WKY-GN-vehicle rats. Glomerular fibrin deposition was significantly reduced in WKY-GN-rhTM rats. In addition, rhTM significantly reduced the renal cortical mRNA expression levels of TNF-α, Toll-like receptor 4, MYD88, TGF-β, αSMA, collagen I, collagen III, fibronectin, and protease-activated receptor 1 (PAR1), a thrombin receptor. In vitro, thrombin stimulation of NRK-49F cells significantly enhanced the mRNA expression levels of αSMA and PAR1, and these upregulations were significantly reduced by pretreatment with rhTM. Conclusions: Administration of rhTM after establishment of crescentic glomerulonephritis (GN) attenuated the subsequent development of renal fibrosis in NTS-N, possibly in part by inhibiting thrombin-mediated fibrogenesis. Our results suggest that rhTM may offer a therapeutic option for limiting the progression of chronic kidney disease in crescentic GN.


2019 ◽  
Vol 30 (10) ◽  
pp. 1925-1938 ◽  
Author(s):  
Yi Wen ◽  
Xiaohan Lu ◽  
Jiafa Ren ◽  
Jamie R. Privratsky ◽  
Bo Yang ◽  
...  

BackgroundPolarized macrophage populations can orchestrate both inflammation of the kidney and tissue repair during CKD. Proinflammatory M1 macrophages initiate kidney injury, but mechanisms through which persistent M1-dependent kidney damage culminates in fibrosis require elucidation. Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor that suppresses inflammatory signals, is an essential regulator of macrophage polarization in adipose tissues, but the effect of myeloid KLF4 on CKD progression is unknown.MethodsWe used conditional mutant mice lacking KLF4 or TNFα (KLF4’s downstream effector) selectively in myeloid cells to investigate macrophage KLF4’s role in modulating CKD progression in two models of CKD that feature robust macrophage accumulation, nephrotoxic serum nephritis, and unilateral ureteral obstruction.ResultsIn these murine CKD models, KLF4 deficiency in macrophages infiltrating the kidney augmented their M1 polarization and exacerbated glomerular matrix deposition and tubular epithelial damage. During the induced injury in these models, macrophage-specific KLF4 deletion also exacerbated kidney fibrosis, with increased levels of collagen 1 and α-smooth muscle actin in the injured kidney. CD11b+Ly6Chi myeloid cells isolated from injured kidneys expressed higher levels of TNFα mRNA versus wild-type controls. In turn, mice bearing macrophage-specific deletion of TNFα exhibited decreased glomerular and tubular damage and attenuated kidney fibrosis in the models. Moreover, treatment with the TNF receptor-1 inhibitor R-7050 during nephrotoxic serum nephritis reduced damage, fibrosis, and necroptosis in wild-type mice and mice with KLF4-deficient macrophages, and abrogated the differences between the two groups in these parameters.ConclusionsThese data indicate that macrophage KLF4 ameliorates CKD by mitigating TNF-dependent injury and fibrosis.


2019 ◽  
Vol 95 (6) ◽  
pp. 1359-1372 ◽  
Author(s):  
Michael P. Madaio ◽  
Istvan Czikora ◽  
Nino Kvirkvelia ◽  
Malgorzata McMenamin ◽  
Qiang Yue ◽  
...  

2019 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Nobuhiro Kanazawa ◽  
Masayuki Iyoda ◽  
Kei Matsumoto ◽  
Yukihiro Wada ◽  
Taihei Suzuki ◽  
...  

2018 ◽  
Vol 315 (6) ◽  
pp. F1869-F1880 ◽  
Author(s):  
Ida Aringer ◽  
Katharina Artinger ◽  
Alexander H. Kirsch ◽  
Corinna Schabhüttl ◽  
Katharina Jandl ◽  
...  

Prostaglandin E2 (PGE2) signaling is known to modulate inflammation and vascular resistance. Receptors of PGE2 [E-type prostanoid receptors (EP)] might be an attractive pharmacological target in immune-mediated diseases such as glomerulonephritis. We hypothesized that selective EP4 antagonism improves nephrotoxic serum nephritis (NTS) by its anti-inflammatory properties. Mice were subjected to NTS and treated with the EP4 antagonist ONO AE3-208 (10 mg·kg body wt−1·day−1] or vehicle starting from disease initiation. In one set of experiments, treatment was started 4 days after NTS induction. Tubular epithelial cells were evaluated in vitro under starving conditions. EP4 antagonist treatment significantly improved the NTS phenotype without affecting blood pressure levels. Remarkably, the improved NTS phenotype was also observed when treatment was started 4 days after NTS induction. EP4 antagonism decreased tubular chemokine (C-X-C motif) ligand ( Cxcl) 1 and Cxcl-5 expression and thereby subsequently reduced interstitial neutrophil infiltration into the kidney. In vitro, tubular epithelial cells increasingly expressed Cxcl-5 mRNA and Cxcl-5 protein when treated with PGE2 or an EP4 agonist under starving conditions, which was blunted by EP4 antagonist treatment. Together, EP4 antagonism improves the NTS phenotype, probably by decreasing mainly Cxcl-5 production in tubular cells, thereby reducing renal neutrophil infiltration.


Sign in / Sign up

Export Citation Format

Share Document