cesium concentration
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 253
Author(s):  
Prem. C. Pandey ◽  
Hari Prakash Yadav ◽  
Shubhangi Shukla ◽  
Roger J. Narayan

Selective screening followed by the sensing of cesium radionuclides from contaminated water is a challenging technical issue. In this study, the adsorption functionality of Prussian blue (PB) nanoparticles was utilized for the detection and efficient removal of cesium cations. An efficient PB nanoparticle-modified screen-printed electrode (SPE) in the three-electrode configuration was developed for the electrochemical sensing and removal of Cs+. PB nanoparticles inks were obtained using a facile two-step process that was previously described as suitable for dispensing over freshly prepared screen-printed electrodes. The PB nanoparticle-modified SPE induced a cesium adsorption-dependent chronoamperometric signal based on ion exchange as a function of cesium concentration. This ion exchange, which is reversible and rapid, is associated with electron transfer in the PB nanoparticle-modified SPE. Using this electrochemical adsorption system (EAS) based on chronoamperometry, the maximum adsorption capacity (Qmax) of Cs+ ions in the PB nanoparticle-modified SPE reached up to 325 ± 1 mg·g−1 in a 50 ± 0.5 μM Cs+ solution, with a distribution coefficient (Kd) of 580 ± 5 L·g−1 for Cs+ removal. The cesium concentration-dependent adsorption of PB nanoparticles was also demonstrated by fluorescence spectroscopy based on fluorescence quenching of PB nanoparticles as a function of cesium concentration using a standard fluorophore like fluorescein in a manner analogous to that previously reported for As(III).


2021 ◽  
Vol 43 (5) ◽  
pp. 336-346
Author(s):  
Youngsu Lim ◽  
Dongwoo Kim ◽  
Jiseon Jang ◽  
Bolam Kim ◽  
Dae Sung Lee

Objectives: Among various radioactive contaminants, radioactive cesium is one of the most harmful radionuclides that causes human health issues due to its high emission of gamma-ray, high solubility, high mobility, high fission yield, and long half-life. Different kinds of adsorbents have been developed for the removal of cesium from radioactive wastewater. Especially, biochar has attracted great attention as a potential adsorbent in the treatment of pollutants and for water purification. In addition, Prussian blue is a cubic lattice structure that contains a cage size similar to the hydrated cesium ionic radius, indicating it can selectively remove cesium ions. Therefore, the aim of this study is to investigate the cesium adsorption performance of synthesized Prussian blue-immobilized coffee ground biochar (PB-CGBC) under various experimental conditions for cesium removal from radioactive wastewater.Methods: After wasted coffee ground was washed and dried, it was heated at 400℃ with 10℃/min of heating rate and 5 h of retention time in a furnace with little or no available air. The PB-CGBC was synthesized using a facile co-precipitation method. Fourier transform-infrared spectroscopy, X-ray diffractometer, field emission-transmission electron microscope, Brunauer-Emmett-Teller, and zeta potential analyzer were used to analyze physico-chemical characteristics and surface structure of the synthesized adsorbents. The kinetic and equilibrium experiments of cesium adsorption on PB-CGBC were carried out and the effect of pH, temperature, initial cesium concentration, and contact time were also investigated in a batch system.Results and Discussion: The characteristic analysis clearly confirmed the successful synthesis of PB-CGBC, indicating its abundant functional groups and special surface structure. In the batch study, it was found that the cesium adsorption onto the PB-CGBC was exothermic nature. The Elovich kinetic model and Temkin isotherm also provided a good correlation with the cesium adsorption reaction onto the PB-CGBC. The maximum adsorption capacity of PB-CGBC for cesium was 129.57 mg/g at 15℃ and pH 8 at 40 mM of an initial cesium concentration, which was one of the highest values among those of previously reported adsorbents.Conclusions: In this study, the PB-CGBC was synthesized by immobilizing Prussian blue to the surface of coffee ground biochar and successfully applied for the adsorptive removal of cesium ions. Based on the experimental results, the synthesized PB-CGBC can be served as a great adsorbent for treatment of wastewater polluted with radioactive cesium.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 279
Author(s):  
Steponas Ašmontas ◽  
Aurimas Čerškus ◽  
Jonas Gradauskas ◽  
Asta Grigucevičienė ◽  
Konstantinas Leinartas ◽  
...  

Cesium-containing triple cation perovskites are attracting significant attention as suitable tandem partners for silicon solar cells. The perovskite layer of a solar cell must strongly absorb the visible light and be transparent to the infrared light. Optical transmittance measurements of perovskite layers containing different cesium concentrations (0–15%) were carried out on purpose to evaluate the utility of the layers for the fabrication of monolithic perovskite/silicon tandem solar cells. The transmittance of the layers weakly depended on cesium concentration in the infrared spectral range, and it was more than 0.55 at 997 nm wavelength. It was found that perovskite solar cells containing 10% of cesium concentration show maximum power conversion efficiency.


Author(s):  
Tomoaki NAKAMURA ◽  
Hirokazu SUMI ◽  
Akira ODA ◽  
Takeshi TAKEMURA ◽  
Minoru OCHIAI

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7825
Author(s):  
Martin O’Brien ◽  
Masakazu Hiraide ◽  
Yoshimi Ohmae ◽  
Naoto Nihei ◽  
Satoru Miura ◽  
...  

Background Stable cesium (133Cs) naturally exists in the environment whereas recently deposited radionuclides (e.g., 137Cs) are not at equilibrium. Stable cesium has been used to understand the long-term behavior of radionuclides in plants, trees and mushrooms. We are interested in using 133Cs to predict the future transfer factor (TF) of radiocesium from contaminated logs to shiitake mushrooms in Eastern Japan. However, the current methodology to obtain a representative wood sample for 133Cs analysis involves mechanically breaking and milling the entire log (excluding bark) to a powder prior to analysis. In the current study, we investigated if sawdust obtained from cutting a log along its length at eight points is as robust but a faster alternative to provide a representative wood sample to determine the TF of 133Cs between logs and shiitake. Methods Oak logs with ready-to-harvest shiitake fruiting bodies were cut into nine 10-cm discs and each disc was separated into bark, sapwood and heartwood and the concentration of 133Cs was measured in the bark, sapwood, heartwood, sawdust (generated from cutting each disc) and fruiting bodies (collected separately from each disc), and the wood-to-shiitake TF was calculated. Results We found that the sawdust-to-shiitake TF of 133Cs did not differ (P = 0.223) compared to either the sapwood-to-shiitake TF or heartwood-to-shiitake TF, but bark did have a higher concentration of 133Cs (P < 0.05) compared to sapwood and heartwood. Stable cesium concentration in sawdust and fruiting bodies collected along the length of the logs did not differ (P > 0.05). Discussion Sawdust can be used as an alternative to determine the log-to-shiitake TF of 133Cs. To satisfy the goals of different studies and professionals, we have described two sampling methodologies (Methods I and II) in this paper. In Method I, a composite of eight sawdust samples collected from a log can be used to provide a representative whole-log sample (i.e., wood and bark), whereas Method II allows for the simultaneous sampling of two sets of sawdust samples—one set representing the whole log and the other representing wood only. Both methodologies can greatly reduce the time required for sample collection and preparation.


2017 ◽  
Vol 73 (2) ◽  
pp. I_911-I_916 ◽  
Author(s):  
Tomoaki NAKAMURA ◽  
Maho SUZUKI ◽  
Masakazu MIURA ◽  
Hirokazu SUMI ◽  
Akira ODA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document