cu6sn5 imcs
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 210
Author(s):  
Junhyuk Son ◽  
Dong-Yurl Yu ◽  
Min-Su Kim ◽  
Yong-Ho Ko ◽  
Dong-Jin Byun ◽  
...  

The nucleation kinetics and morphology of Cu6Sn5 IMCs at the interface between a Sn-0.7Cu-0.2Cr solder and Cu substrate were investigated in this study. A Sn-0.7Cu solder was utilized as a reference to elucidate the impact of Cr addition. The mechanical properties of the solder joints were determined via ball-shear tests. Cu coupons were dipped in the molten solders for 1 and 3 s at 240–300 °C, and the morphological analyses were conducted via electron microscopy. Both the solders contained scallop-like Cu6Sn5 IMCs. The smallest Cu6Sn5 IMCs were observed at 260 °C in both the solders, and the particle size increased at 280 and 300 °C. The IMCs in the Sn-0.7Cu-0.2Cr solder were smaller and thinner than those in the Sn-0.7Cu solder at all the reaction temperatures. The thickness of the IMCs increased as the reaction temperature increased. Inverse C-type nucleation curves were obtained, and the maximum nucleation rate was observed at an intermediate temperature. The shear strengths of the Sn-0.7Cu-0.2Cr solder joints were higher than those of the Sn-0.7Cu solder joints. This study will facilitate the application of lead-free solders, such as Sn-0.7Cu-0.2Cr, in automotive electrical components.


2019 ◽  
Vol 9 (17) ◽  
pp. 3590 ◽  
Author(s):  
Jie Wu ◽  
Songbai Xue ◽  
Jingwen Wang ◽  
Guoqiang Huang

The evolution of interfacial morphology and shear strengths of the joints soldered with Sn-0.3Ag-0.7Cu (SAC0307) and SAC0307-0.05Pr aged at 150 °C for different times (h; up to 840 h) were investigated. The experiments showed the electronic joint soldered with SAC0307-0.05Pr has a much higher shear strength than that soldered with SAC0307 after each period of the aging process. This contributes to the doping of Pr atoms, “vitamins in alloys”, which tend to be adsorbed on the grain surface of interfacial Cu6Sn5 IMCs, inhibiting the growth of IMCs. Theoretical analysis indicates that doping 0.05 wt.% Pr can evidently lower the growth constant of Cu6Sn5 (DCu6), while the growth constant of Cu3Sn (DCu3) decreased slightly. In addition, the electronic joint soldered with SAC0307-0.05Pr still has better ductility than that soldered with SAC0307, even after a 840-h aging process.


Author(s):  
Preeti Chauhan ◽  
Subhasis Mukherjee ◽  
Michael Osterman ◽  
Abhijit Dasgupta ◽  
Michael Pecht

SnAgCu (SAC) solders undergo continuous micro structural coarsening during both storage and service. In this study, we use cross-sectioning and image processing techniques to periodically quantify the effect of isothermal aging quantitatively on phase coarsening and evolution, in SAC305 (Sn3.0Ag0.5Cu) solder. SAC305 alloy is aged for (24–1000) hours at 100°C (∼ 0.7–0.8Tmelt). The characteristic parameters monitored during isothermal aging include size, volume fraction, and inter-particle spacing of both nanoscale Ag3Sn intermetallic compounds (IMCs) and micronscale Cu6Sn5 IMCs, as well as the volume fraction of pure tin dendrites in SAC305 solder. Effects of above microstructural evolution on secondary creep constitutive response of SAC305 interconnects were modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs and reinforcement strengthening by micronscale Cu6Sn5 IMCs, respectively; and (2) load sharing between pure Sn dendrites and the surrounding eutectic Sn-Ag phase. The coarse-grained polycrystalline Sn micro structure in SAC305 solder was not captured in the above model because isothermal aging did not appear to cause any significant change in the initial grain morphology of SAC305 solder joints. The above model is shown to predict the drop in creep resistance due to the influence of isothermal aging on SAC305 solder joints.


Sign in / Sign up

Export Citation Format

Share Document