scholarly journals Nucleation and Morphology of Cu6Sn5 Intermetallic at the Interface between Molten Sn-0.7Cu-0.2Cr Solder and Cu Substrate

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 210
Author(s):  
Junhyuk Son ◽  
Dong-Yurl Yu ◽  
Min-Su Kim ◽  
Yong-Ho Ko ◽  
Dong-Jin Byun ◽  
...  

The nucleation kinetics and morphology of Cu6Sn5 IMCs at the interface between a Sn-0.7Cu-0.2Cr solder and Cu substrate were investigated in this study. A Sn-0.7Cu solder was utilized as a reference to elucidate the impact of Cr addition. The mechanical properties of the solder joints were determined via ball-shear tests. Cu coupons were dipped in the molten solders for 1 and 3 s at 240–300 °C, and the morphological analyses were conducted via electron microscopy. Both the solders contained scallop-like Cu6Sn5 IMCs. The smallest Cu6Sn5 IMCs were observed at 260 °C in both the solders, and the particle size increased at 280 and 300 °C. The IMCs in the Sn-0.7Cu-0.2Cr solder were smaller and thinner than those in the Sn-0.7Cu solder at all the reaction temperatures. The thickness of the IMCs increased as the reaction temperature increased. Inverse C-type nucleation curves were obtained, and the maximum nucleation rate was observed at an intermediate temperature. The shear strengths of the Sn-0.7Cu-0.2Cr solder joints were higher than those of the Sn-0.7Cu solder joints. This study will facilitate the application of lead-free solders, such as Sn-0.7Cu-0.2Cr, in automotive electrical components.

2003 ◽  
Vol 125 (4) ◽  
pp. 531-538 ◽  
Author(s):  
S. Wiese ◽  
E. Meusel

The creep and crack propagation behavior of SnAg3.5, SnAg4Cu0.5, and SnPb37 (as reference) was investigated on flip chip solder joints V=1×10−12 m3. The test specimen consisted of two silicon chips (3.3×3.3 mm), bonded to each other by four flip chip joints (one on each corner). The steady-state creep rate was determined by reversible constant load shear tests. The stress exponents were n=11 for Sn96.5Ag3.5, n=18 for Sn95.5Ag4Cu0.5, and n=2 for Sn63Pb37. The apparent activation energies were Q=79.8 kJ/mol for Sn96.5Ag3.5, Q=83.1 kJ/mol for Sn95.5Ag4Cu0.5, and Q=44.9 kJ/mol for Sn63Pb37. Microstructural analyses indicated that small precipitates of Ag3Sn and η-Cu6Sn5 intermetallics are responsible for the high values for n and Q that were found for the Sn96.5Ag3.5 and Sn95.5Ag4Cu0.5. The crack growth rate was determined by isothermal fatigue experiments on Sn63Pb37 and Sn95.5Ag4Cu0.5 flip chip solder joints. The flip chip solder joints were loaded with strain amplitudes ranging from Δε=0.3–4% and test frequencies f=0.0001-100 Hz at a temperature of T=300 K.


2005 ◽  
Vol 863 ◽  
Author(s):  
Shengquan Ou ◽  
Yuhuan Xu ◽  
K. N. Tu ◽  
M. O. Alam ◽  
Y. C. Chan

AbstractThe most frequent failure of wireless, handheld, and movable consumer electronic products is an accidental drop to the ground. The impact may cause interfacial fracture of wire-bonds or solder joints between a Si chip and its packaging module. Existing metrologies, such as ball shear, and pull test cannot well represent the shock reliability of the package. In this study, a micro-impact machine is utilized to test the impact reliability of three kinds of lead-free solders: 99Sn1Ag, 98.5Sn1Ag0.5Cu and 97.5Sn1Ag0.5Cu1In (hereafter called Sn1Ag, Sn1Ag0.5Cu, and Sn1Ag0.5Cu1In). The effect of thermal aging on the impact toughness is also evaluated in this study. We find a ductile-to-brittle transition in SnAg (Cu) solder joints after thermal aging. The impact toughness is enhanced by the thermal aging. This is a combination effect of the growth of intermetallic compound (IMC) at the interface provided strong bonding, and the softening of the solder bulk during the thermal aging absorbed more energy during plastic deformation.


2013 ◽  
Vol 58 (2) ◽  
pp. 529-533 ◽  
Author(s):  
R. Koleňák ◽  
M. Martinkovič ◽  
M. Koleňáková

The work is devoted to the study of shear strength of soldered joints fabricated by use of high-temperature solders of types Bi-11Ag, Au-20Sn, Sn-5Sb, Zn-4Al, Pb-5Sn, and Pb-10Sn. The shear strength was determined on metallic substrates made of Cu, Ni, and Ag. The strength of joints fabricated by use of flux and that of joints fabricated by use of ultrasonic activation without flux was compared. The obtained results have shown that in case of soldering by use of ultrasound (UT), higher shear strength of soldered joints was achieved with most solders. The highest shear strength by use of UT was achieved with an Au-20Sn joint fabricated on copper, namely up to 195 MPa. The lowest average values were achieved with Pb-based solders (Pb-5Sn and Pb-10Sn). The shear strength values of these solders used on Cu substrate varied from 24 to 27 MPa. DSC analysis was performed to determine the melting interval of lead-free solders.


Author(s):  
Yueying Su ◽  
Rui Zhu ◽  
Tianqing Zheng ◽  
Yanping Shen ◽  
Yanyi Xu ◽  
...  

Author(s):  
Leila J. Ladani ◽  
Omar Rodriguez

3-dimensional integrated circuit (3D IC) is a promising technology in today’s IC packaging industry. Since the technology is in infancy stages, many aspects of this technology are still under heavy investigation. Reliability of through silicon via (TSV) interconnects and interlayer bonding between the silicon layers are issues that become more complicated in 3D ICs due to complexity of the architecture and miniaturized interconnects. Optimizing design of these devices is essential in order to avoid short fatigue life of interconnects. This manuscript addresses the impact of design parameters such as die thickness, TSV diameter, TSV pitch, underfill thickness and underfill properties on thermo-mechanical durability of Direct Chip Attach (DCA) solder joints and TSV interconnects used in a 3D IC packages. A design was proposed where DCA is used to connect 4 layers of ICs and TSVs are used to connect the active layer of the dies to the second silicon layer. Solder joints, as small as 50-micron diameter, were used to attach silicon layers. A numerical experiment is designed to vary design parameters at 3 levels using L9 ortagonal array. A 3-dimensional model of the package was built and model was solved under an accelerated temperature cycle loading. Solder is considered as visco-plastic material and copper interconnects are assumed to follow bilinear isotropic hardening behavior. Two continuum damage models, energy partitioning and Coffin-Manson models, were used to assess the number of cycles to failure for solder joints and TSV copper interconnects respectively. Minitab software was used to analyze the result of experiment. The most influential factors on durability of solder interconnect are found to be underfill properties and height. However, the most influential factor on TSV durability is found to be TSV diameter. A non-linear response was observed for TSV pitch and diameter indicating that the optimum level may be in the range selected.


2015 ◽  
Vol 15 (9) ◽  
pp. 13109-13166
Author(s):  
P. A. Alpert ◽  
D. A. Knopf

Abstract. Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An apparent cooling rate dependence ofJhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. In an idealized cloud parcel model applying variability in ISAs for each droplet, the model predicts enhanced immersion freezing temperatures and greater ice crystal production compared to a case when ISAs are uniform in each droplet. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2014 ◽  
Vol 624 ◽  
pp. 453-460 ◽  
Author(s):  
Matteo Panizza ◽  
Enrico Garbin ◽  
Maria Rosa Valluzzi ◽  
Claudio Modena

Compared to more traditional techniques, the application of Externally Bonded-Fibre Reinforced Polymers (EB-FRP) represents a viable alternative for the strengthening of masonry structures, also in case of Cultural Heritage buildings where strict requirements need to be met, aimed at minimizing the impact of the intervention. Since the FRP-to-masonry bond behaviour strongly affects design and effectiveness of such interventions, several investigations have been carried out in recent years to study this phenomenon, generally based on the longer experience developed for concrete substrates. Mortar joints, which are geometrical and mechanical discontinuities, distinguish and characterize masonry substrates from concrete ones, and therefore deserve a special attention as far as their role in the bond behaviour is not clarified yet. This paper, aimed at giving a contribution also from a methodological point of view, presents the main experimental results of shear tests carried out on glass composites (GFRP) applied to natural calcareous stones (pietra leccese), to lime mortar blocks and to masonry prisms made by coupling stones and lime mortar. Overall 22 shear tests were performed, keeping a bonded length of 200 mm for stones and mortar specimens while it was changed from 65 mm (corresponding to one stone and one mortar joint) to 195 mm (three stones and three mortar joints) in the case of masonry prisms. The effect of the FRP end anchorage on the test development was investigated as well, and results of the experimental tests are herein discussed in detail.


2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract A major problem faced by electronic packaging industries is the poor reliability of lead free solder joints. One of the most common methods utilized to tackle this problem is by doping the alloy with other elements, especially bismuth. Researches have shown Bismuth doped solder joints to mostly fail near the Intermetallic (IMC) layer rather than the bulk of the solder joint as commonly observed in traditional SAC305 solder joints. An understanding of the properties of this IMC layer would thus provide better solutions on improving the reliability of bismuth doped solder joints. In this study, the authors have used three different lead free solders doped with 1%, 2% and 3% bismuth. Joints of these alloys were created on copper substrates. The joints were then polished to clearly expose the IMC layers. These joints were then aged at 125 °C for 0, 1, 2, 5 and 10 days. For each aging condition, the elastic modulus and the hardness of the IMC layers were evaluated using a nanoindenter. The IMC layer thickness and the chemical composition of the IMC layers were also determined for each alloy at every aging condition using Scanning Electron Microscopy (SEM) and EDS. The results from this study will give a better idea on how the percentage of bismuth content in lead free solder affects the IMC layer properties and the overall reliability of the solder joints.


Sign in / Sign up

Export Citation Format

Share Document