ejina oasis
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3424
Author(s):  
Weizhen Wang ◽  
Feinan Xu ◽  
Jiemin Wang

Investigating the energy and water vapor exchange in oasis riparian forest ecosystems is of significant importance to improve scientific understanding of land surface processes in extreme arid regions. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) provided many observations of water vapor and heat fluxes from riparian forest ecosystem by using a network of eddy-covariance (EC) systems installed over representative surfaces in the Ejina Oasis, which is located in the downstream areas of the Heihe River Basin, northwestern China. Based on EC flux measurements and meteorological data performed at five stations and covering representative surface types of Populus euphratica tree with associated Tamarix chinensis shrub, Tamarix chinensis shrubland, cantaloupe cropland, and barren-land, this study explored the spatio-temporal patterns of heat and water vapor fluxes over the Ejina Oasis riparian forest ecosystem with five different surface types over the course of a growing season in 2014. Energy balance closure of the flux data was evaluated; footprint analysis for each EC site was also performed. Results showed that energy balance closure for the flux data was reasonably good, with average energy balance ratio (EBR) of 1.03. The seasonal variations in net radiation (Rn), latent (LE), and sensible heat flux (H) over the five contrasting surfaces were similar, and a reverse seasonal change was observed in energy partitioning into LE and H. Remarkable differences in Rn, LE, and H between the five surfaces were explored preliminarily, associated closely with the soil properties and foliage phenology. Over the growing season (May–October) in 2014, the total ET ranged 622–731 mm for mixed forest of P. euphratica trees with associated T. chinensis shrubs with average daily ET of 3.6–4.2 mm; ET from T. chinensis shrubland was about 541 mm, with average daily ET of 3.6 mm. ET for barren-land was 195 mm. The total ET in irrigated cantaloupe cropland with plastic mulch was 431 mm for its four-month growing period with a total average of 3.8 mm d−1. Determination of ET over riparian forest ecosystem helps to improve reasonable use of limited water resource in the Ejina Oasis.


PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235769
Author(s):  
Chunling He ◽  
Chaodong Zhu

2020 ◽  
Vol 12 (7) ◽  
pp. 2583
Author(s):  
Zhaoxia Ye ◽  
Aihong Fu ◽  
Shuhua Zhang ◽  
Yuhai Yang

The main objective of this work is to calculate the suitable scale of the Ejina Oasis in different scenarios (high-, normal-, and low-flow years), assess the stability of the Ejina Oasis, and, finally, accurately determine if an artificial oasis area and total oasis area need to be reduced or increased. Using the water balance method, we calculated the suitable scale of the artificial Ejina Oasis as 767.80, 624.00, and 451.33 km2 in high-, normal-, and low-flow years, respectively. By utilizing the water-heat balance method combined with an assessment of the present stability of the Ejina Oasis, the results showed that in high-flow years, the suitable scale of the Ejina Oasis is 1174–1762 km2, and the stability index of the current oasis is 0.55. In normal-flow years, the suitable scale of the Ejina Oasis is found to be 915–1373 km2, and the stability index of the current oasis is 0.43. In low-flow years, the suitable scale of the Ejina Oasis is 590–885 km2, and the stability index of the current oasis decreases to 0.27. In order to further improve the stability of oases, it remains necessary to control the scale of oases to cope with water resource shortages that result from water resource instability under climate change. The present study’s findings will enable optimal water-use planning decisions that take social, economic, and ecological issues into account, and provide the foundation for optimal decision-making for regional administrative departments to effectively coordinate regional economic development, farmland protection, environmental protection, and water resource protection.


2019 ◽  
Vol 575 ◽  
pp. 17-30
Author(s):  
Feinan Xu ◽  
Weizhen Wang ◽  
Jiemin Wang ◽  
Chunlin Huang ◽  
Yuan Qi ◽  
...  

2017 ◽  
Author(s):  
Yang Su ◽  
Yuan Qi ◽  
Jianhua Wang ◽  
Feinan Xu ◽  
Jinlong Zhang

Sign in / Sign up

Export Citation Format

Share Document