scholarly journals Novel peptide ion chemistry associated with gold (I) cationization: Preferential cleavage at lysine residues

2018 ◽  
Vol 427 ◽  
pp. 114-122 ◽  
Author(s):  
David J. Foreman ◽  
Stella K. Betancourt ◽  
Alice L. Pilo ◽  
Scott A. McLuckey
1983 ◽  
Vol 49 (03) ◽  
pp. 208-213
Author(s):  
A J Osbahr

SummaryThe modification of canine fibrinogen with citraconic anhydride modified the ε-amino groups of the fibrinogen and at the same time generated additional negative charges into the protein. The addition of thrombin to the modified fibrinogen did not induce polymerization; however, the fibrinopeptide was released at a faster rate than from the unmodified fibrinogen. The physical properties of the citraconylated fibrinogen were markedly altered by the modification of 50-60 lysine residues in one hour. A modified fibrinopeptide-A was released by thrombin from the modified fibrinogen and was electrophoretically more anionic than the unmodified fibrinopeptide-A. Edman analysis confirmed the modification of the lysine residue present in the peptide. The rate of removal of citraconylated fibrinopeptide-A from modified fibrinogen by thrombin was 30 to 40 percent greater than the cleavage of unmodified fibrinopeptide-A from unmodified fibrinogen. However, the modification of 60 or more lysine residues in the fibrinogen produced a decrease in the rate of cleavage of citraconylated fibrinopeptide-A. The results suggest that additional negative charge in the vicinity of the attachment of fibrinopeptide-A to canine fibrinogen aids in the removal of the peptide by thrombin.


2019 ◽  
Vol 26 (36) ◽  
pp. 6544-6563
Author(s):  
Victoria Lucia Alonso ◽  
Luis Emilio Tavernelli ◽  
Alejandro Pezza ◽  
Pamela Cribb ◽  
Carla Ritagliati ◽  
...  

Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery because the miss-regulation of human bromodomains was discovered to be involved in the development of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain- containing proteins in protozoa, offering a new opportunity for the development of antiparasitic drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains were classified in eight groups based on sequence similarity but parasitic bromodomains are very divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize the myriad of small-molecules under study to treat different pathologies and which of them have been tested in trypanosomatids and other protozoa. All the information available led us to propose that T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules to inhibit them should be empowered.


2018 ◽  
Vol 24 (26) ◽  
pp. 3072-3083 ◽  
Author(s):  
Sowndramalingam Sankaralingam ◽  
Angham Ibrahim ◽  
MD Mizanur Rahman ◽  
Ali H. Eid ◽  
Shankar Munusamy

Background: The incidence and prevalence of diabetes mellitus are increasing globally at alarming rates. Cardiovascular and renal complications are the major cause of morbidity and mortality in patients with diabetes. Methylglyoxal (MG) - a highly reactive dicarbonyl compound – is increased in patients with diabetes and has been implicated to play a detrimental role in the etiology of cardiovascular and renal complications. Derived from glucose, MG binds to arginine and lysine residues in proteins, and the resultant end products serve as surrogate markers of MG generation in vivo. Under normal conditions, MG is detoxified by the enzyme glyoxalase 1 (Glo1), using reduced glutathione as a co-factor. Elevated levels of MG is known to cause endothelial and vascular dysfunction, oxidative stress and atherosclerosis; all of which are risk factors for cardiovascular diseases. Moreover, MG has also been shown to cause pathologic structural alterations and impair kidney function. Conversely, MG scavengers (such as N-acetylcysteine, aminoguanidine or metformin) or Nrf2/Glo1 activators (such as trans-resveratrol / hesperetin) are shown to be useful in preventing MG-induced cardiovascular and renal complications in diabetes. However, clinical evidence supporting the MG lowering properties of these agents are limited and hence, need further investigation. Conclusion: Reducing MG levels directly using scavengers or indirectly via activation of Nrf2/Glo1 may serve as a novel and potent therapeutic strategy to counter the deleterious effects of MG in diabetic complications.


2019 ◽  
Vol 23 (15) ◽  
pp. 1663-1670 ◽  
Author(s):  
Chunyan Ao ◽  
Shunshan Jin ◽  
Yuan Lin ◽  
Quan Zou

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.


2017 ◽  
Author(s):  
Tim K. Lowenstein ◽  
◽  
Javier Garcia Veigas ◽  
Dioni I. Cendón ◽  
Lluís Gibert Beotas

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Hsin Chiu ◽  
Christopher B. Medina ◽  
Catherine A. Doyle ◽  
Ming Zhou ◽  
Adishesh K. Narahari ◽  
...  

AbstractActivation of Pannexin 1 (PANX1) ion channels causes release of intercellular signaling molecules in a variety of (patho)physiological contexts. PANX1 can be activated by G protein-coupled receptors (GPCRs), including α1-adrenergic receptors (α1-ARs), but how receptor engagement leads to channel opening remains unclear. Here, we show that GPCR-mediated PANX1 activation can occur via channel deacetylation. We find that α1-AR-mediated activation of PANX1 channels requires Gαq but is independent of phospholipase C or intracellular calcium. Instead, α1-AR-mediated PANX1 activation involves RhoA, mammalian diaphanous (mDia)-related formin, and a cytosolic lysine deacetylase activated by mDia – histone deacetylase 6. HDAC6 associates with PANX1 and activates PANX1 channels, even in excised membrane patches, suggesting direct deacetylation of PANX1. Substitution of basally-acetylated intracellular lysine residues identified on PANX1 by mass spectrometry either prevents HDAC6-mediated activation (K140/409Q) or renders the channels constitutively active (K140R). These data define a non-canonical RhoA-mDia-HDAC6 signaling pathway for GαqPCR activation of PANX1 channels and uncover lysine acetylation-deacetylation as an ion channel silencing-activation mechanism.


1991 ◽  
Vol 266 (13) ◽  
pp. 8122-8128
Author(s):  
K.M. Krueger ◽  
L.M. Mende-Mueller ◽  
J.T. Barbieri

Amylase ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 38-49
Author(s):  
Connie Pontoppidan ◽  
Svend G. Kaasgaard ◽  
Carsten P. Sønksen ◽  
Carsten Andersen ◽  
Birte Svensson

Abstract The industrial thermostable Bacillus licheniformis α-amylase (BLA) has wide applications, including in household detergents, and efforts to improve its performance are continuously ongoing. BLA during the industrial production is deamidated and glycated resulting in multiple forms with different isoelectric points. Forty modified positions were identified by tandem mass spectrometric peptide mapping of BLA forms separated by isoelectric focusing. These modified 12 asparagine, 9 glutamine, 8 arginine and 11 lysine residues are mostly situated on the enzyme surface and several belong to regions involved in stability, activity and carbohydrate binding. Eight residues presumed to interact with starch at the active site and surface binding sites (SBSs) were subjected to mutational analysis. Five mutants mimicking deamidation (N→D, Q→E) at the substrate binding cleft showed moderate to no effect on thermostability and k cat and K M for maltoheptaose and amylose. Notably, the mutations improved laundry wash efficiency in detergents at pH 8.5 and 10.0. Replacing three reducing sugar reactive side chains (K→M, R→L) at a distant substrate binding region and two SBSs enhanced wash performance especially in liquid detergent at pH 8.5, slightly improved enzymatic activity and maintained thermostability. Wash performance was most improved (5-fold) for the N265D mutant near substrate binding subsite +3.


Sign in / Sign up

Export Citation Format

Share Document