scholarly journals Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes

Author(s):  
Wei Liu ◽  
Yusen Yang ◽  
Haisong Feng ◽  
Yiming Niu ◽  
Lei Wang ◽  
...  

Abstract The design and exploitation of high-performance catalysts as well as understanding the structure-property correlation have gained considerable attention in selective hydrogenation reactions, but remain a huge challenge. Herein, we report a RuNi single atom alloy (SAA) in which Ru single atoms are anchored onto Ni nanoparticle surface via Ru–Ni coordination accompanied with electron transfer from sub-surface Ni to Ru. The optimal catalyst 0.4% RuNi SAA exhibits simultaneously improved activity (TOF value: 4293 h− 1) and chemoselectivity toward selective hydrogenation of 4-nitrostyrene to 4-aminostyrene (yield: >99%), which is, to the best of our knowledge, the highest level compared with reported heterogeneous catalysts. In situ experimental researches based on XAFS, FT-IR measurements and theoretical calculations reveal that the Ru–Ni interfacial sites as intrinsic active centers facilitate the preferential cleavage of N–O bond in nitro group with a decreased energy barrier by 0.35 eV. In addition, the Ru–Ni synergistic catalysis promotes the formation of intermediates (C8H7NO* and C8H7NOH*) and accelerates the rate-determining step (hydrogenation of C8H7NOH*), resulting in the extraordinary activity and chemoselectivity toward nitroarenes hydrogenation.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xi Zhang ◽  
Guoqing Cui ◽  
Haisong Feng ◽  
Lifang Chen ◽  
Hui Wang ◽  
...  

AbstractSelective hydrogenolysis of biomass-derived glycerol to propanediol is an important reaction to produce high value-added chemicals but remains a big challenge. Herein we report a PtCu single atom alloy (SAA) catalyst with single Pt atom dispersed on Cu nanoclusters, which exhibits dramatically boosted catalytic performance (yield: 98.8%) towards glycerol hydrogenolysis to 1,2-propanediol. Remarkably, the turnover frequency reaches up to 2.6 × 103 molglycerol·molPtCu–SAA−1·h−1, which is to our knowledge the largest value among reported heterogeneous metal catalysts. Both in situ experimental studies and theoretical calculations verify interface sites of PtCu–SAA serve as intrinsic active sites, in which the single Pt atom facilitates the breakage of central C–H bond whilst the terminal C–O bond undergoes dissociation adsorption on adjacent Cu atom. This interfacial synergistic catalysis based on PtCu–SAA changes the reaction pathway with a decreased activation energy, which can be extended to other noble metal alloy systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengyao Ouyang ◽  
Konstantinos G. Papanikolaou ◽  
Alexey Boubnov ◽  
Adam S. Hoffman ◽  
Georgios Giannakakis ◽  
...  

AbstractThe atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity.


2020 ◽  
Vol 124 (44) ◽  
pp. 24271-24278
Author(s):  
Mark Muir ◽  
David L. Molina ◽  
Arephin Islam ◽  
Mohammed K. Abdel-Rahman ◽  
Michael Trenary

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Linlin Cao ◽  
Qiquan Luo ◽  
Jiajia Chen ◽  
Lan Wang ◽  
Yue Lin ◽  
...  

Abstract Achieving active and stable oxygen evolution reaction (OER) in acid media based on single-atom catalysts is highly promising for cost-effective and sustainable energy supply in proton electrolyte membrane electrolyzers. Here, we report an atomically dispersed Ru1-N4 site anchored on nitrogen-carbon support (Ru-N-C) as an efficient and durable electrocatalyst for acidic OER. The single-atom Ru-N-C catalyst delivers an exceptionally intrinsic activity, reaching a mass activity as high as 3571 A gmetal−1 and turnover frequency of 3348 O2 h−1 with a low overpotential of 267 mV at a current density of 10 mA cm−2. The catalyst shows no evident deactivation or decomposition after 30-hour operation in acidic environment. Operando synchrotron radiation X-ray absorption spectroscopy and infrared spectroscopy identify the dynamic adsorption of single oxygen atom on Ru site under working potentials, and theoretical calculations demonstrate that the O-Ru1-N4 site is responsible for the high OER activity and stability.


2020 ◽  
Author(s):  
Jin-Cheng Liu ◽  
Hai Xiao ◽  
Xiao-Kun Zhao ◽  
Nan-Nan Zhang ◽  
Yuan Liu ◽  
...  

<p>While single-atom catalysts (SACs) have achieved great success in the past decade, their application is potentially limited by the simplistic single-atom active centers, which makes single-cluster catalysts (SCCs) a natural extension. SCCs with precise numbers of atoms and structural configurations possess SAC’s merits, yet have greater potentials for catalyzing complex reactions and/or bulky reactants. Through systematic quantum-chemical studies and computational screening, we report here the rational design of transition metal trimer clusters anchored on graphdiyne as a novel kind of stable SCCs with great potentials for efficient and precise heterogenous catalysis. By investigating their structures and catalytic performance for oxygen reduction reaction, hydrogen evolution reaction, and CO<sub>2</sub> reduction reactions, we provide theoretical guidelines for their potential applications as heterogeneous catalysts. These graphdiyne supported SCCs provide an ideal benchmark scaffold for rational design of precise catalysts for industrially important chemical reactions. </p>


2017 ◽  
Vol 7 (19) ◽  
pp. 4276-4284 ◽  
Author(s):  
Jilei Liu ◽  
Junjun Shan ◽  
Felicia R. Lucci ◽  
Sufeng Cao ◽  
E. Charles H. Sykes ◽  
...  

Silica supported and unsupported PdAu single atom alloys (SAAs) were investigated for the selective hydrogenation of 1-hexyne to hexenes under mild conditions.


Science ◽  
2021 ◽  
Vol 372 (6549) ◽  
pp. 1444-1447
Author(s):  
Ryan T. Hannagan ◽  
Georgios Giannakakis ◽  
Romain Réocreux ◽  
Julia Schumann ◽  
Jordan Finzel ◽  
...  

The complexity of heterogeneous catalysts means that a priori design of new catalytic materials is difficult, but the well-defined nature of single-atom–alloy catalysts has made it feasible to perform unambiguous theoretical modeling and precise surface science experiments. Herein we report the theory-led discovery of a rhodium-copper (RhCu) single-atom–alloy catalyst for propane dehydrogenation to propene. Although Rh is not generally considered for alkane dehydrogenation, first-principles calculations revealed that Rh atoms disperse in Cu and exhibit low carbon-hydrogen bond activation barriers. Surface science experiments confirmed these predictions, and together these results informed the design of a highly active, selective, and coke-resistant RhCu nanoparticle catalyst that enables low-temperature nonoxidative propane dehydrogenation.


2021 ◽  
Author(s):  
Huibo Zhao ◽  
Ruofan Yu ◽  
Sicong Ma ◽  
Yang Chen ◽  
Kaizhuang Xu ◽  
...  

Abstract Cu-based catalysts have attracted much interest in CO2 hydrogenation to methanol because of their high activity. However, the effect of interface, coordination structure, particle size and other underlying factors existed in heterogeneous catalysts render to complex active sites on its surface, therefore it is difficult to study the real active sites for methanol synthesis. Here, we report a novel Cu-based catalyst with isolated Cu active sites (Cu1-O3 units) for highly selective hydrogenating CO2 to methanol at low temperature (100% selectivity for methanol at 180 oC). Experimental and theoretical results reveal that the single-atom Cu-Zr catalyst with Cu1-O3 units is only contributed to synthesize methanol at 180 oC, but the Cu clusters or nanoparticles with Cu-Cu or Cu-O-Cu active sites will promote the process of reverse water gas shift (RWGS) side reaction to form undesirable byproducts CO. Furthermore, the Cu1-O3 units with tetrahedral structure could gradually migrate to the catalyst surface for accelerating CO2 hydrogenation reaction during catalytic process. The high activity isolated Cu-based catalyst with legible structure will be helpful to understand the real active sites of Cu-based catalysts for methanol synthesis from CO2 hydrogenation, thereby guiding further design the Cu catalyst with high performance to meet the industrial demand, at the same time as extending the horizontal of single atom catalyst for application in the thermal catalytic process of CO2 hydrogenation.


2013 ◽  
Vol 15 (29) ◽  
pp. 12187 ◽  
Author(s):  
Matthew B. Boucher ◽  
Branko Zugic ◽  
George Cladaras ◽  
James Kammert ◽  
Matthew D. Marcinkowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document