soil bioassay
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Enriqueta Amora-Lazcano ◽  
Héctor J. Quiroz-González ◽  
Cristofer I. Osornio-Ortega ◽  
Juan A. Cruz-Maya ◽  
Janet Jan-Roblero

Background: Deficiency in sorghum growth in ecosystems of low-nutrient soils has been scarcely studied. This soil deficiency can be overcome by the addition of plant growth-promoting bacteria which increase sorghum growth. Questions and/or Hypotheses: indole acetic acid (IAA) producing and phosphate solubilizing bacteria can promote sorghum growth under nutritional stress. Studied species: Sorghum bicolor (L.) Moench. Study site and dates: Mexico City, 2018. Methods: Of the twelve bacterial strains utilized, three produce IAA (group BI), two strains produce IAA and siderophores (BIS group), four strains produce IAA and solubilize phosphate (BIP group), and three strains produce IAA, solubilize phosphate, and produce siderophores (BIPS group). Hydroponic bioassays and low-nutrient soil bioassay were used. Results: In hydroponic bioassays, for BI and BIS groups, five strains significantly increased the growth parameters with respect to the control, and for the BIP and BIPS groups, two strains promoted stem development and shoot dry weight. In a low-nutrient soil bioassay, Pseudomonas sp. BI-1 (from BI group) was the one that presented the highest percentages 32, 48, 140 and 79 % in stem diameter, height and dry weight of the shoot and dry weight of the root, respectively, followed by the P. mohnii BIPS-10 strain (from BIPS group) that exhibited similar results. Conclusions: IAA producing Pseudomonas strains improve the sorghum growth in a low-nutrient soil and suggest thatPseudomonas sp. BI-1 and P. mohnii BIPS-10 could be used as potential bioinoculants for sorghum.


2020 ◽  
Author(s):  
S. Gyawali ◽  
M.L. Derie ◽  
E.W. Gatch ◽  
D. Sharma‐Poudyal ◽  
L.J. du Toit
Keyword(s):  

2020 ◽  
Vol 6 (3) ◽  
pp. 107
Author(s):  
Ofir Degani ◽  
Danielle Regev ◽  
Shlomit Dor ◽  
Onn Rabinovitz

Magnaporthiopsis maydis is the causal agent of severe maize late wilt disease. Disease outbreak occurs at the maize flowering and fruit development stage, leading to the plugging of the plant’s water vascular system, resulting in dehydration and collapse of the infected host plant. The pathogen is borne by alternative hosts, infected seeds, soil, and plant residues and gradually spreads to new areas and new countries. However, no soil assay is available today that can detect M. maydis infestation and study its prevalence. We recently developed a molecular quantitative Real-Time PCR (qPCR) method enabling the detection of the M. maydis DNA in plant tissues. Despite the technique’s high sensitivity, the direct examination of soil samples can be inconsistent. To face this challenge, the current work demonstrates the use of a soil bioassay involving the cultivation of a hyper-susceptible maize genotype (Megaton cultivar, Hazera Seeds Ltd., Berurim MP Shikmim, Israel) on inspected soils. The use of Megaton cv. may facilitate pathogen establishment and spread inside the plant’s tissues, and ease the isolation and enrichment of the pathogen from the soil. Indeed, this cultivar suffers from severe dehydration sudden death when grown in an infested field. The qPCR method was able to accurately and consistently identify and quantify the pathogen’s DNA in an in vitro seed assay after seven days, and in growth-chamber potted plants at as early as three weeks. These results now enable the use of this highly susceptible testing plant to validate the presence of the maize late wilt pathogen in infested soils and to evaluate the degree of its prevalence.


2019 ◽  
Vol 52 (4) ◽  
pp. 464-470
Author(s):  
M. A. Pukalchik ◽  
V. A. Terekhova ◽  
M. M. Karpukhin ◽  
V. M. Vavilova

Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 512-526 ◽  
Author(s):  
Emily W. Gatch ◽  
Lindsey J. du Toit

The maritime Pacific Northwest is the only region of the United States suitable for production of spinach seed, a cool-season, daylength-sensitive crop. However, the acidic soils of this region are highly conducive to spinach Fusarium wilt, caused by Fusarium oxysporum f. sp. spinaciae. Rotations of at least 10 to 15 years between spinach seed crops are necessary to reduce the high risk of losses to this disease. The objectives of this study were to develop a greenhouse soil bioassay to assess the relative risk of Fusarium wilt in fields intended for spinach seed production, and to identify soil chemical and physical properties associated with conduciveness to this disease. Preliminary bioassays established a protocol for growing spinach plants in a greenhouse environment and inducing Fusarium wilt symptoms so that the bioassay can be completed in <2 months. Test soils with a range of Fusarium wilt inoculum potentials, and three spinach inbred parent lines (highly susceptible, moderately susceptible, and moderately resistant to Fusarium wilt) were used to evaluate sensitivity of the bioassay to different levels of risk of Fusarium wilt. Then, from 2010 to 2013, spinach seed growers and stakeholders submitted soil samples from 147 fields for evaluation with the bioassay. The fields were each under consideration for planting a spinach seed crop, yet the bioassay revealed a wide range in Fusarium wilt inoculum potential among soil samples. Differences in susceptibility to Fusarium wilt of the three inbred lines were key to detecting differences in wilt risk among soils. Visits to spinach seed crops planted in fields evaluated in the bioassay, as well as test plots of the three inbred lines planted in growers’ seed crops, confirmed the predictive value of the bioassay for Fusarium wilt risk. Correlation analyses for 23 soil properties revealed significant relationships of 15 soil properties with the Fusarium wilt potential of a soil, but the correlations were influenced significantly by susceptibility of the inbred line to Fusarium wilt (13, 10, and 8 soil properties correlated significantly with Fusarium wilt risk for the susceptible, moderate, and partially resistant inbreds, respectively). Multiple regression analyses identified different statistical models for prediction of Fusarium wilt risk depending on the spinach inbred line, but the best fitting model explained <34% of the variability in Fusarium wilt risk among 121 fields evaluated in the soil bioassay. Thus, no model was robust enough to replace the bioassay for the purpose of predicting Fusarium wilt risk.


2011 ◽  
Vol 44 (2) ◽  
pp. 173-179 ◽  
Author(s):  
V. A. Terekhova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document