scholarly journals Analysis of Carbon Dioxide Solubility Increasement Caused by Baffle Diameter Variation in Airlift Photobioreactor to Growth Rate of Synechococcus HS-9 Biomass

Evergreen ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 879-884
Author(s):  
Sulthan Rafii Ardiansyah ◽  
Nasruddin ◽  
Wellyzar Sjamsuridzal ◽  
Wisnu Wardhana ◽  
Nining Betawati Prihantini
2005 ◽  
Vol 18 (23) ◽  
pp. 5179-5182 ◽  
Author(s):  
Patrick J. Michaels ◽  
Paul C. Knappenberger ◽  
Christopher Landsea

Abstract In a simulation of enhanced tropical cyclones in a warmer world, Knutson and Tuleya make several assumptions that are not borne out in the real world. They include an unrealistically large carbon dioxide growth rate, an overly strong relationship between sea surface temperature and hurricane intensity, and the use of a mesoscale model that has shown little to no useful skill in predicting current-day hurricane intensity. After accounting for these inaccuracies, a detectable increase in Atlantic hurricane intensity in response to growing atmospheric greenhouse gas levels during this century becomes unlikely.


2004 ◽  
Vol 70 (5) ◽  
pp. 2928-2934 ◽  
Author(s):  
Maria Lövenklev ◽  
Ingrid Artin ◽  
Oskar Hagberg ◽  
Elisabeth Borch ◽  
Elisabet Holst ◽  
...  

ABSTRACT The effects of carbon dioxide, sodium chloride, and sodium nitrite on type B botulinum neurotoxin (BoNT/B) gene (cntB) expression in nonproteolytic Clostridium botulinum were investigated in a tryptone-peptone-yeast extract (TPY) medium. Various concentrations of these selected food preservatives were studied by using a complete factorial design in order to quantitatively study interaction effects, as well as main effects, on the following responses: lag phase duration (LPD), growth rate, relative cntB expression, and extracellular BoNT/B production. Multiple linear regression was used to set up six statistical models to quantify and predict these responses. All combinations of NaCl and NaNO2 in the growth medium resulted in a prolonged lag phase duration and in a reduction in the specific growth rate. In contrast, the relative BoNT/B gene expression was unchanged, as determined by the cntB-specific quantitative reverse transcription-PCR method. This was confirmed when we measured the extracellular BoNT/B concentration by an enzyme-linked immunosorbent assay. CO2 was found to have a major effect on gene expression when the cntB mRNA levels were monitored in the mid-exponential, late exponential, and late stationary growth phases. The expression of cntB relative to the expression of the 16S rRNA gene was stimulated by an elevated CO2 concentration; the cntB mRNA level was fivefold greater in a 70% CO2 atmosphere than in a 10% CO2 atmosphere. These findings were also confirmed when we analyzed the extracellular BoNT/B concentration; we found that the concentrations were 27 ng · ml−1 · unit of optical density−1 in the 10% CO2 atmosphere and 126 ng · ml−1 · unit of optical density−1 in the 70% CO2 atmosphere.


2000 ◽  
Vol 18 (No. 3) ◽  
pp. 110-114
Author(s):  
J. Čermák ◽  
M. Rychtera ◽  
P. Nechvíle ◽  
J. Náhlík ◽  
K. Melzoch ◽  
...  

Ergosterol is a major sterol in yeast cells. Intermediates of ergosterol biosynthesis or products of ergosterol biotransformation occur in cells too. Sterols mainly form components of cell membranes. Fluidity of membranes is affected by sterols. The amount of sterols in cells can be influenced above all by cultivation conditions and by the yeast genotype. Specific growth rate is an important factor which affects the amount of sterols present in yeast cells. We carried out a series of 24-hour cultivations to find out the impact of specific growth rate on sterol biosynthesis. Inflow of synthetic medium to the bioreactor was controlled by means of a profile of carbon dioxide concentration in the outlet gases. This profile was acquired by simulation according to a mathematical model of cultivation. Profile of carbon dioxide concentration corresponded to a precalculated profile of specific growth rate. Cultivation was divided into two phases with different growth rate values. A constant value of the specific growth rate was maintained in the 1st phase. The specific growth rate value decreased by controlling the inflow in the 2nd phase (beginning at 12th hour of cultivation). Other cultivations were carried out using so-called physiological control which consisted in determining the immediate physiological state (e.g., RQ) and the choice of control strategy according to the metabolic state. Selected control strategy ensures an immediate action (inflow of the medium). If the specific growth rate decreased in the 1st phase, the amount of total sterols in yeast dry biomass increased (to 2.7% in yeast dry biomass). But the purity of ergosterol decreased (amount of sterol contaminants increased up to 23.3% in the sterol fraction). If a constant value of respiratory quotient was maintained (at about 1.1), the amount of total sterols in yeast dry biomass and the purity of ergosterol were constant. If the value of respiratory quotient was changed in the growth and final phase of cultivation, the amount of total sterols in yeast dry biomass increased (to 2.83% in yeast dry biomass). However, the purity of ergosterol decreased (amount of sterol contaminants increased up to 21.2% in sterol fraction).


1967 ◽  
Vol 105 (2) ◽  
pp. 813-819 ◽  
Author(s):  
Nicole Bégin-Heick ◽  
J. J. Blum

1. Exposure of Astasia longa to oxygen+carbon dioxide (95:5) at atmospheric pressure leads to an inhibition of growth rate and of respiration. Growth resumes at the normal rate as soon as the oxygenation is discontinued, but respiration recovers more slowly. 2. Mitochondria prepared from cells exposed to oxygen+carbon dioxide (95:5) during growth have considerably decreased activities of succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, succinate dehydrogenase and succinate oxidase activities as compared with mitochondria obtained from cells exposed to air+carbon dioxide (95:5). Cytochrome oxidase activity is not appreciably inhibited by exposure of the cells to 95% oxygen. 3. The mitochondrial fraction of Astasia contains rhodoquinone. The rhodoquinone concentration increases in cells exposed to 95% oxygen. The content of ergosterol-containing compounds also increases in the mitochondria of cells exposed to 95% oxygen. There is little change in the ubiquinone content of the mitochondrial fraction. The ubiquinone of Astasia appears to be ubiquinone-45.


2013 ◽  
Vol 664 ◽  
pp. 551-556
Author(s):  
Guang Yang ◽  
Zong De Liu ◽  
Yong Tian Wang ◽  
Rong Juan Yang

Carbon dioxide (CO2) laser was applied to fabricate TiC reinforced composite coatings. Different microstructures of ceramic phases were observed by SEM. The main phases of coatings were detected by XRD, while the individual one was examined by electron probe X-ray microanalysis .The effect of composition of binder phases on morphology was explained by the ratio of the temperature gradient in front of the liquid/ solid interface to the growth rate.


2021 ◽  
Author(s):  
◽  
Jonathan P Wright

<p>In high intensity recirculated aquaculture systems (RAS), metabolic carbon dioxide can accumulate quickly and have a significant impact on the pH of the culture water. A reduction in growth rate and increased shell deformation have been observed in farmed abalone that has been attributed to reduced pH levels that occur in RAS due to accumulation of CO2 in the culture water. The overall aim of this research programme was to assess two methods of pH control (physical vs. chemical) used in land-based aquaculture systems for the culture of the New Zealand abalone, pāua. In the first study the efficiency of physical carbon dioxide removal from seawater using a cascade column degassing unit was considered. Hydraulic loading, counter current air flow, packing media height, and water temperature were manipulated with the goal of identifying the most effective column configuration for degassing. Three influent water treatments were tested between a range of pH 7.4 to 7.8 (~3.2 to 1.2 mg L-1 CO2 respectively). For all influent CO2 concentrations the resulting pH change between influent and effluent water (immediately post column) were very low, the most effective configuration removed enough CO2 to produce a net gain of only 0.2 of a pH unit. Manipulating water flow, counter current air flow and packing media height in the cascade column had only minor effects on removal efficiency when working in the range of pH 7.4 – 7.8. A secondary study was undertaken to examine the effects on pāua growth of adding chemicals to increase alkalinity. Industrial grade calcium hydroxide (Ca(OH)2) is currently used to raise pH in commercial pāua RAS, however it is unknown if the addition of buffering chemicals affects pāua growth. Replicate pāua tanks were fed with seawater buffered with either sodium hydroxide, food grade Ca(OH)2 or industrial grade Ca(OH)2, with the aim of identifying the effects of buffered seawater on the growth of juvenile pāua (~30 mm shell length). Growth rate ([micrometre]/day) was not significantly affected by the addition of buffering chemicals into the culture water, and the continued use of industrial grade Ca(OH)2 is recommended for the commercial production of pāua in RAS. Shell dissolution is observed in cultured pāua reared in low pH conditions, however there is limited information surrounding the direct effect of lowered pH on the rate of biomineralisation and shell dissolution in abalone. A preliminary investigation was undertaken to examine shell mineralogy, the rate of biomineralisation and shell dissolution of pāua grown at pH 7.6 and 7.9 to determine their sensitivity to lowered pH. It was found that the upper prismatic layer of juvenile pāua shell (~40 mm) was composed almost exclusively of the relatively stable polymorph calcite, that suggests pāua are relatively tolerant to a low pH environment, compared to other abalone species that have proportionately more soluble aragonite in their prismatic layer. Regardless of shell composition, significant shell dissolution was observed in pāua reared in water of pH 7.6. Over the duration of the trial, the rate of mineralisation ([micrometre]/day) was significantly different between pāua reared in pH 7.6 and in pH 7.9 water. However, after a period of acclimation, low pH did not appear to effect rate of mineralisation in pāua.</p>


Sign in / Sign up

Export Citation Format

Share Document