scholarly journals Reducing the Hygroscopic Swelling in MEMS Sensor using Different Mold Materials

Author(s):  
Pinki Kumari ◽  
Kuldeep Singh ◽  
Anuj Singal

Today, Hygroscopic swelling is one of the biggest challenging problem of Epoxy mold compound (EMC) in packaging with Microelectromechanical system (MEMS) devices. To overcome this hygroscopic swelling problem of EMC and guard the devices, MEMS devices are molded in this paper with different Mold Compound (MC) i.e. titanium and ceramic etc. during their interconnection with the board. Also, a comparatively performance analysis of this various mold compound with MEMS pressure sensor has been studied in this paper at 60% humidity, 140 mol/m<sup>3</sup> saturation concentration and 25 <sup>o</sup>C. It was observed that hygroscopic swelling does not take place in the titanium mold compound. But, titanium is very costly so we have to consider something cheaper material i.e. ceramic in this paper. The Hygroscopic swelling in Ceramic Mold Compound after 1 year is nearly 0.05mm which is very less than epoxy.

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6346
Author(s):  
Mohammad H Hasan ◽  
Ali Al-Ramini ◽  
Eihab Abdel-Rahman ◽  
Roozbeh Jafari ◽  
Fadi Alsaleem

This work presents an approach to delay-based reservoir computing (RC) at the sensor level without input modulation. It employs a time-multiplexed bias to maintain transience while utilizing either an electrical signal or an environmental signal (such as acceleration) as an unmodulated input signal. The proposed approach enables RC carried out by sufficiently nonlinear sensory elements, as we demonstrate using a single electrostatically actuated microelectromechanical system (MEMS) device. The MEMS sensor can perform colocalized sensing and computing with fewer electronics than traditional RC elements at the RC input (such as analog-to-digital and digital-to-analog converters). The performance of the MEMS RC is evaluated experimentally using a simple classification task, in which the MEMS device differentiates between the profiles of two signal waveforms. The signal waveforms are chosen to be either electrical waveforms or acceleration waveforms. The classification accuracy of the presented MEMS RC scheme is found to be over 99%. Furthermore, the scheme is found to enable flexible virtual node probing rates, allowing for up to 4× slower probing rates, which relaxes the requirements on the system for reservoir signal sampling. Finally, our experiments show a noise-resistance capability for our MEMS RC scheme.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3979
Author(s):  
Jun Eon An ◽  
Usung Park ◽  
Dong Geon Jung ◽  
Chihyun Park ◽  
Seong Ho Kong

Die attach is a typical process that induces thermal stress in the fabrication of microelectromechanical system (MEMS) devices. One solution to this problem is attaching a portion of the die to the package. In such partial die bonding, the lack of control over the spreading of the adhesive can cause non-uniform attachment. In this case, asymmetric packaging stress could be generated and transferred to the die. The performance of MEMS devices, which employ the differential outputs of the sensing elements, is directly affected by the asymmetric packaging stress. In this paper, we proposed a die-attach structure with a pillar to reduce the asymmetric packaging stress and the changes in packaging stress due to changes in the device temperature. To verify the proposed structure, we fabricated four types of differential resonant accelerometers (DRA) with the silicon-on-glass process. We confirmed experimentally that the pillar can control the spreading of the adhesive and that the asymmetric packaging stress is considerably reduced. The simulation and experimental results indicated that the DRAs manufactured using glass-on-silicon wafers as handle substrates instead of conventional glass wafers have a structure that compensates for the thermal stress.


1998 ◽  
Vol 546 ◽  
Author(s):  
Terry J. Garino ◽  
Todd Christenson ◽  
Eugene Venturini

AbstractWe have developed a variety of processes for fabricating components for micro devices based on deep x-ray lithography (DXRL). Although the techniques are applicable to many materials, we have demonstrated them using hard (Nd 2Fe14B) and soft (Ni-Zn ferrite) magnetic materials because of the importance of these materials in magnetic micro-actuators and other devices and because of the difficulty fabricating them by other means. The simplest technique involves pressing a mixture of magnetic powder and a binder into a DXRL-formed mold. In the second technique, powder is pressed into the mold and then sintered to densify. The other two processes involve pressing at high temperature either powder or a dense bulk material into a ceramic mold that was previously made using a DXRL mold. These techniques allow arbitrary 2-dimensional shapes to be made 10 to 1000 μm thick with in-plane dimensions as small as 50μm and dimensional tolerances in the micron range. Bonded isotropic Nd2Fe14B micro-magnets made by these processes had an energy product of 7 MGOe.


Author(s):  
Jesse Law ◽  
Robert Cassel ◽  
Ahsan Mian

This paper characterizes a piezoresistive sensor under variations of both size and orientation with respect to the silicon crystal lattice for its application to MEMS pressure sensing. The sensor to be studied is a four-terminal piezoresistive sensor commonly referred to as a van der Pauw (VDP) structure. In a recent study, our team has determined the relation between the biaxial stress state and the piezoresistive response of a VDP structure by combining the VDP resistance equations with the equations governing silicon piezoresistivity and has proposed a novel piezoresistive pressure sensor. It is observed that the sensitivity of the VDP sensor is over three times higher than the conventional filament type Wheatstone bridge resistor. With MEMS devices being used in applications which continually necessitate smaller size, characterizing the effect of relative size and misalignment on the sensitivity of the VDP sensor is important. It is determined that the performance of the sensor is strongly dependent only on the longitudinal position of the sensor on the diaphragm, and is relatively tolerant of other errors in the manufacturing process such as transverse position, sensor depth, and orientation angle.


2018 ◽  
Vol 24 (9) ◽  
pp. 3705-3712 ◽  
Author(s):  
K. V. Vineetha ◽  
K. Girija Sravani ◽  
B. V. S. Sailaja ◽  
P. Ashok Kumar ◽  
Koushik Guha ◽  
...  

Author(s):  
S. Sathyanarayanan ◽  
A. Vimala Juliet

Micromachining technology has greatly benefited from the success of developments in implantable biomedical microdevices. In this paper, microelectromechanical systems (MEMS) capacitive pressure sensor operating for biomedical applications in the range of 20–400 mm Hg was designed. Employing the microelectromechanical systems technology, high sensor sensitivities and resolutions have been achieved. Capacitive sensing uses the diaphragm deformation-induced capacitance change. The sensor composed of a rectangular polysilicon diaphragm that deflects due to pressure applied over it. Applied pressure deflects the 2 µm diaphragm changing the capacitance between the polysilicon diaphragm and gold flat electrode deposited on a glass Pyrex substrate. The MEMS capacitive pressure sensor achieves good linearity and large operating pressure range. The static and thermo electromechanical analysis were performed. The finite element analysis data results were generated. The capacitive response of the sensor performed as expected according to the relationship of the spacing of the plates.


2013 ◽  
Vol 562-565 ◽  
pp. 482-485
Author(s):  
Jian Long Zhu ◽  
Wei Hua Li ◽  
Zai Fa Zhou ◽  
Qin Gan Huang

Piezoresistive sensor was one of the earliest silicon MEMS devices, which based on the theory of piezoresistive. In order to build the piezoresistive IP library for the MEMS foundry, we improved the structures of the piezoresistive based on the achievement of Liwei Lin1, and new analytic model and design software for square shape membrance has been developed. The ability to calculate sensitivity and linearity of MEMS piezoresistive sensor using the new model have been demonstrated. As results, output voltage, sensitivity and linearity characteristics of MEMS sensor are presented in this paper.


2002 ◽  
Vol 17 (8) ◽  
pp. 2121-2129 ◽  
Author(s):  
Jong-Ah Paik ◽  
Shih-Kang Fan ◽  
Chang-Jin Kim ◽  
Ming C. Wu ◽  
Bruce Dunn

The high porosity and uniform pore size of mesoporous oxide films offer unique opportunities for microelectromechanical system (MEMS) devices that require low density and low thermal conductivity. This paper provides the first report in which mesoporous films were adapted for MEMS applications. Mesoporous SiO2 and Al2O3 films were prepared by spin coating using block copolymers as the structure-directing agents. The resulting films were over 50% porous with uniform pores of 8-nm average diameter and an extremely smooth surface. The photopatterning and etching characteristics of the mesoporous films were investigated and processing protocols were established which enabled the films to serve as the sacrificial layer or the structure layer in MEMS devices. The unique mesoporous morphology leads to novel behavior including extremely high etching rates and the ability to etch underlying layers. Surface micromachining methods were used to fabricate three basic MEMS structures, microbridges, cantilevers, and membranes, from the mesoporous oxides.


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 51047-51054 ◽  
Author(s):  
Zhimin Chai ◽  
Yuhong Liu ◽  
Xinchun Lu ◽  
Dannong He

Si-based microelectromechanical system (MEMS) devices cannot run reliably because of their poor tribological performance.


Sign in / Sign up

Export Citation Format

Share Document