vermamoeba vermiformis
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Clara Rolland ◽  
Julien Andreani ◽  
Dehia Sahmi-Bounsiar ◽  
Mart Krupovic ◽  
Bernard La Scola ◽  
...  

For several decades, the vast world of DNA viruses has been expanding constantly. Various discoveries in this field have broadened our knowledge and revealed that DNA viruses encode many functional features, which were once thought to be exclusive to cellular life. Here, we report the isolation of a giant virus named “clandestinovirus,” grown on the amoebal host Vermamoeba vermiformis. This virus was discovered in a mixed co-culture associated with another giant virus, Faustovirus ST1. Clandestinovirus possesses a linear dsDNA genome of 581,987 base pairs containing 617 genes. Phylogenetically, clandestinovirus is most closely related to Acanthamoeba castellanii medusavirus and was considered a member of the proposed Medusaviridae family. However, clandestinovirus genome is 65% larger than that of medusavirus, emphasizing the considerable genome size variation within this virus family. Functional annotation of the clandestinovirus genes suggests that the virus encodes four core histones. Furthermore, clandestinovirus appears to orchestrate the cell cycle and mitochondrial activities of the infected host by virtue of encoding a panel of protein kinases and phosphatases, and a suite of functionally diverse mitochondrial protein homologs, respectively. Collectively, these observations illuminate a strategy employed by clandestinovirus to optimize the intracellular environment for efficient virus propagation.


Author(s):  
Ruqaiyyah Siddiqui ◽  
Zinb Makhlouf ◽  
Naveed Ahmed Khan

2021 ◽  
Author(s):  
Vincent Delafont ◽  
Mégane Gasqué ◽  
Yann Héchard

AbstractA hybrid sequencing approach, using short and long reads sequencing, was employed for characterizing the genomes of the free-living amoeba host Vermamoeba vermiformis, along with its Dependentiae endosymbiont Vermiphilus pyriformis. The amoeba host reconstructed nuclear genome is 39.5 Mb, and its full mitochondrial genome is 61.7 kb. The closed, circular genome of the Dependentiae endosymbiont Vermiphilus pyriformis, naturally infecting V. vermiformis is 1.1 Mb.


2020 ◽  
Vol 367 (18) ◽  
Author(s):  
Rafik Dey ◽  
Mouh Rayane Mameri ◽  
Selena Trajkovic-Bodennec ◽  
Jacques Bodennec ◽  
Pierre Pernin

ABSTRACT Free-living amoebae are known to act as replication niches for the pathogenic bacterium Legionella pneumophila in freshwater environments. However, we previously reported that some strains of the Willaertia magna species are more resistant to L. pneumophila infection and differ in their ability to support its growth. From this observation, we hypothesize that L. pneumophila growth in environment could be partly dependent on the composition of amoebic populations and on the possible interactions between different amoebic species. We tested this hypothesis by studying the growth of L. pneumophila and of a permissive free-living amoeba, Vermamoeba vermiformis (formerly named Hartmannella vermiformis), in co-culture with or without other free-living amoebae (Acanthamoeba castellanii and W. magna). We demonstrate the occurrence of inter-amoebic phagocytosis with A. castellanii and W. magna being able to ingest V. vermiformis infected or not infected with L. pneumophila. We also found that L. pneumophila growth is strongly impacted by the permissiveness of each interactive amoeba demonstrating that L. pneumophila proliferation and spread are controlled, at least in part, by inter-amoebic interactions.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 215
Author(s):  
Hadjer Boudjemaa ◽  
Julien Andreani ◽  
Idir Bitam ◽  
Bernard La Scola

The discovery of several giant amoeba viruses has opened up a novel area in the field of virology. Despite this, knowledge about ecology of these viruses remains patchy. In this study, we aimed to characterize the diversity of giant viruses in Algeria by inoculating 64 environmental samples on various amoeba strains. After isolation by co-culture with nine amoeba supports, flow cytometry and electron microscopy were used to putatively identify viruses. Definitive identification was performed by PCR and sequencing. Mimiviruses, marseilleviruses, faustoviruses and cedratviruses were the main viruses isolated in this study. Moreover, a new virus, which we named fadolivirus, was also isolated and was found to belong to the recent metagenomic descriptions of Klosneuvirinae. Despite the use of 9 amoeba supports for co-culture, most of the isolates were obtained from two amoebas: Acanthamoeba castellanii Neff and Vermamoeba vermiformis CDC 19. Finally, the viruses most frequently isolated were marseilleviruses (55.5%) and Mimiviruses (22.2%). This work shows that the isolation of viruses previously detected by metagenomic analyses can be tedious, but possible.


2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Leena Hussein Bajrai ◽  
Saïd Mougari ◽  
Julien Andreani ◽  
Emeline Baptiste ◽  
Jeremy Delerce ◽  
...  

ABSTRACT The family of giant viruses is still expanding, and evidence of a translational machinery is emerging in the virosphere. The Klosneuvirinae group of giant viruses was first reconstructed from in silico studies, and then a unique member was isolated, Bodo saltans virus. Here we describe the isolation of a new member in this group using coculture with the free-living amoeba Vermamoeba vermiformis. This giant virus, called Yasminevirus, has a 2.1-Mb linear double-stranded DNA genome encoding 1,541 candidate proteins, with a GC content estimated at 40.2%. Yasminevirus possesses a nearly complete translational machinery, with a set of 70 tRNAs associated with 45 codons and recognizing 20 amino acids (aa), 20 aminoacyl-tRNA synthetases (aaRSs) recognizing 20 aa, as well as several translation factors and elongation factors. At the genome scale, evolutionary analyses placed this virus in the Klosneuvirinae group of giant viruses. Rhizome analysis demonstrated that the genome of Yasminevirus is mosaic, with ∼34% of genes having their closest homologues in other viruses, followed by ∼13.2% in Eukaryota, ∼7.2% in Bacteria, and less than 1% in Archaea. Among giant virus sequences, Yasminevirus shared 87% of viral hits with Klosneuvirinae. This description of Yasminevirus sheds light on the Klosneuvirinae group in a captivating quest to understand the evolution and diversity of giant viruses. IMPORTANCE Yasminevirus is an icosahedral double-stranded DNA virus isolated from sewage water by amoeba coculture. Here its structure and replicative cycle in the amoeba Vermamoeba vermiformis are described and genomic and evolutionary studies are reported. This virus belongs to the Klosneuvirinae group of giant viruses, representing the second isolated and cultivated giant virus in this group, and is the first isolated using a coculture procedure. Extended translational machinery pointed to Yasminevirus among the quasiautonomous giant viruses with the most complete translational apparatus of the known virosphere.


2019 ◽  
Vol 118 (11) ◽  
pp. 3191-3194
Author(s):  
Vincent Delafont ◽  
Estelle Perraud ◽  
Kévin Brunet ◽  
Elodie Maisonneuve ◽  
Sihem Kaaki ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Patrick L. Scheid

Many case reports emphasize the fact that Free-Living Amoebae (FLA) can relatively easily get in contact with humans or animals. The presence of several facultative parasitic FLA in habitats related to human activities supports their public health relevance. While some strains of Acanthamoeba,Naegleria fowleri,Balamuthia mandrillarisand several other FLA have been described as facultative human pathogens, it remains controversial whetherVermamoeba vermiformisstrains may have a pathogenic potential, or whether this FLA is just an incidental contaminant in a range of human cases. However, several cases support its role as a human parasite, either as the only etiological agent, or in combination with other pathogens. Additionally, a wide range of FLA is known as vectors of microorganisms (endocytobionts), hereby emphasizing their environmental significance. Among those FLA serving as hosts for and vectors of (pathogenic) endocytobionts, there are also descriptions ofV. vermiformisas a vehicle and a reservoir of those endocytobionts. The involvement in animal and human health, the role as vector of pathogenic microorganisms and the pathogenicity in cell cultures, led to the assumption thatV. vermiformisshould be considered relevant in terms of public health and environmental health.


Sign in / Sign up

Export Citation Format

Share Document