scholarly journals Ocean Acidification Amplifies the Olfactory Response to 2-Phenylethylamine: Altered Cue Reception as a Mechanistic Pathway?

Author(s):  
Paula Schirrmacher ◽  
Christina C. Roggatz ◽  
David M. Benoit ◽  
Jörg D. Hardege

AbstractWith carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA’s conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.

2020 ◽  
Author(s):  
Paula Schirrmacher ◽  
Christina C. Roggatz ◽  
David M. Benoit ◽  
Jörg D. Hardege

AbstractWith carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. We demonstrate that this dietary predator cue for mammals and sea lampreys is an attractant for hermit crabs. Furthermore, we show that the potency of the cue increases at pH levels expected for the year 2100. In order to explain this increased potency, we assess changes to PEA’s conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.


Author(s):  
Stephens Tim

This chapter examines the impact of climate change and ocean acidification on the oceans and their implications for the international law of the sea. In particular, it assesses the implications of rising sea levels for territorial sea baselines, the seawards extent of maritime zones, and maritime boundaries. It also considers the restrictions placed by the UN Nations Convention on the Law of the Sea (LOSC) upon States in pursuing climate mitigation and adaptation policies, such as attempts to ‘engineer’ the global climate by artificially enhancing the capacity of the oceans to draw CO2 from the atmosphere. The chapter analyzes the role of the LOSC, alongside other treaty regimes, in addressing the serious threat of ocean acidification.


2014 ◽  
Vol 11 (14) ◽  
pp. 3965-3983 ◽  
Author(s):  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification (OA) is the consequence of rising atmospheric CO2 levels, and it is occurring in conjunction with global warming. Observational studies show that OA will impact ocean biogeochemical cycles. Here, we use an Earth system model under the RCP8.5 emission scenario to evaluate and quantify the first-order impacts of OA on marine biogeochemical cycles, and its potential feedback on our future climate. We find that OA impacts have only a small impact on the future atmospheric CO2 (less than 45 ppm) and global warming (less than a 0.25 K) by 2100. While the climate change feedbacks are small, OA impacts may significantly alter the distribution of biological production and remineralisation, which would alter the dissolved oxygen distribution in the ocean interior. Our results demonstrate that the consequences of OA will not be through its impact on climate change, but on how it impacts the flow of energy in marine ecosystems, which may significantly impact their productivity, composition and diversity.


2020 ◽  
Author(s):  
K R DEVIKA ◽  
P MUHAMED ASHRAF

Dear Professor,<div><p>I am herewith enclosing a research paper entitled “<b>Electrochemical characteristics of BIS 2062 carbon steel under simulated ocean acidification scenario.</b>” authored by Devika KR, and me. </p> <p>The research paper highlights the behavior of carbon steel in acidified natural seawater. Ocean acidification is a burning issue under climate change. Several studies have undertaken to understand the behavior marine organisms and marine environment. No studies have initiated regarding the deterioration of materials due to ocean acidification. Large number of materials were deployed in the ocean with different objectives. These materials are under risk as the ocean acidification continues. We believe this is the first attempt to study the impact of ocean acidification on carbon steel. </p> <p>The study conducted to evaluate the impact of ocean acidification on BIS 2062 boat building steel. The results showed that the carbon steel will deteriorate 2 to 3 times higher when pH was changed from 8.05 to 7.90. The data highlights the immediate need to redesign the marine materials within 1-2 decade. The paper also highlights the possible mechanism of deterioration under different pH scenario.</p><p>Thanking you</p><p>Sincerely</p><p>ashrafp</p><br></div>


2020 ◽  
Author(s):  
Joana Sauze ◽  
Jacques Roy ◽  
Clément Piel ◽  
Damien Landais ◽  
Emmanuel S Gritti ◽  
...  

&lt;p&gt;The sustainability of agricultural, forested and other managed or natural ecosystems is critical for the future of mankind. However, the services provided by these ecosystems are under threat due to climate change, loss of biodiversity, and land use changes. In order to face the challenges of preserving or improving ecosystems services and securing food supply we need to understand and forecast how ecosystems will respond to current and future changes. To help answer those questions Ecotrons facilities are born. Such infrastructures provide sets of confinement units for the manipulation of environmental conditions and real-time measurement of ecological processes under controlled and reproduceable conditions, bridging the gap between the complexity of in natura studies and the simplicity of laboratory experiments.&lt;/p&gt;&lt;p&gt;The European Ecotron of Montpellier (www.ecotron.cnrs.fr) is an experimental research infrastructure for the study of the impact of climate change on ecosystem functioning and biodiversity. This infrastructure offers, through calls open to the international community, three experimental platforms at different scales. The Macrocosms platform is composed of twelve 40 m&lt;sup&gt;3&lt;/sup&gt; units, each able to host 2-12 t lysimeters, with a 2-5 m&amp;#178; canopy area and a soil depth of up to 2 m. The Mesocosms one has eighteen 2-4 m&lt;sup&gt;3&lt;/sup&gt; units, each able to host lysimeters of 0.4-1 m depth and 0.4-1 m&amp;#178; area. The Microcosms platform consists of growth chambers (1 m height, 1 m&amp;#178; area) in which smaller units (with photosynthetic plants, soils, insects, etc.) can be installed. Each experimental unit of each platform allows to confine terrestrial ecosystems. This way, environmental parameters such as temperature (-10 to +50 &amp;#176;C), relative humidity (20-80 %), precipitation (sprinkler or drip) and atmospheric CO&lt;sub&gt;2&lt;/sub&gt; concentration (200-1000 ppm) are strictly and continuously controlled and recorded. But the uniqueness of the European Ecotron of Montpellier lies on its ability to also continuously measure, in each unit, net gas exchange (evapotranspiration, CO&lt;sub&gt;2&lt;/sub&gt; / CH&lt;sub&gt;4&lt;/sub&gt; / N&lt;sub&gt;2&lt;/sub&gt;O net fluxes) that occur in between the ecosystem studied and the atmosphere, as well as CO&lt;sub&gt;2&lt;/sub&gt;, H&lt;sub&gt;2&lt;/sub&gt;O, N&lt;sub&gt;2&lt;/sub&gt;O and O&lt;sub&gt;2&lt;/sub&gt; isotopologues. Those tools are powerful and remarkable to access additional information about processus involved in ecosystem functioning.&lt;/p&gt;&lt;p&gt;The aim of this presentation is to describe the Macrocosms and the Mesocosms platforms through examples of international projects recently run in these platforms.&lt;/p&gt;


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 146 ◽  
Author(s):  
Stéphane Boyer ◽  
Bradley S. Case ◽  
Marie-Caroline Lefort ◽  
Benjamin R. Waterhouse ◽  
Stephen D. Wratten

Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST), where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil) are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we  1) outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2) use a GIS-based approach to illustrate how  potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified.


2013 ◽  
Vol 10 (11) ◽  
pp. 17683-17723 ◽  
Author(s):  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification (OA) is the consequence of rising atmospheric CO2, and it is occurring in conjunction with global warming. Observational studies show that OA will impact ocean biogeochemical cycles. Here, we use a coupled carbon-climate Earth System Model under the RCP8.5 emission scenario to evaluate and quantify the first-order impacts of OA on marine biogeochemical cycles and the potential feedback on our future climate over this century. We find that OA impacts have only a small impact on the future atmospheric CO2 (less than 45 ppm) and future global warming (less than a 0.25 K) by 2100. While the climate change feedbacks are small, OA impacts may significantly alter the distribution of biological production and remineralization, which would alter the dissolved oxygen distribution in the ocean interior. Our results demonstrate that the consequences of OA will not be through its impact on climate change, but on how it impacts the flow of energy in marine ecosystems, which may significantly impact their productivity, composition and diversity.


2020 ◽  
Author(s):  
K R DEVIKA ◽  
P MUHAMED ASHRAF

Dear Professor,<div><p>I am herewith enclosing a research paper entitled “<b>Electrochemical characteristics of BIS 2062 carbon steel under simulated ocean acidification scenario.</b>” authored by Devika KR, and me. </p> <p>The research paper highlights the behavior of carbon steel in acidified natural seawater. Ocean acidification is a burning issue under climate change. Several studies have undertaken to understand the behavior marine organisms and marine environment. No studies have initiated regarding the deterioration of materials due to ocean acidification. Large number of materials were deployed in the ocean with different objectives. These materials are under risk as the ocean acidification continues. We believe this is the first attempt to study the impact of ocean acidification on carbon steel. </p> <p>The study conducted to evaluate the impact of ocean acidification on BIS 2062 boat building steel. The results showed that the carbon steel will deteriorate 2 to 3 times higher when pH was changed from 8.05 to 7.90. The data highlights the immediate need to redesign the marine materials within 1-2 decade. The paper also highlights the possible mechanism of deterioration under different pH scenario.</p><p>Thanking you</p><p>Sincerely</p><p>ashrafp</p><br></div>


2021 ◽  
Author(s):  
Alexandra Avrutin ◽  
Philip Goodwin

&lt;p&gt;A central goal of climate science and policy is to establish and follow carbon emissions pathways towards a single metric of changes in the Earth system. Currently, this most often means restricting global mean surface warming to 1.5 and 2 &amp;#176;C, in line with the Paris Climate Agreement. However, anthropogenic emissions do not lead solely to increases in global mean temperature, but also cause other changes to the Earth system. This study aims to quantify carbon emission pathways that are consistent with additional climate targets, and explore the impact of applying these additional climate targets on the future carbon budget. Here, we consider ocean acidification, although eventually multiple additional climate targets could be considered.&amp;#160;&lt;/p&gt;&lt;p&gt;Emission of carbon dioxide leads to ocean acidification, since the ocean is a significant carbon sink in the climate system, absorbing an estimated 16 to 30% of yearly anthropogenic carbon emissions (Friedlingstein et al., 2020). Increased ocean acidification threatens ocean biodiversity, specifically coral reef systems and calcifying organisms, with impacts up the food web. The effects of acidification extend towards human systems, in part due to the impact on fisheries: Narita et al. (2012) estimate that the loss of mollusk production alone due to acidification could cost 100 billion USD globally following a business-as-usual trajectory towards 2100.&lt;/p&gt;&lt;p&gt;Despite the far-reaching damage caused by ocean acidification, there has been little successful effort to explicitly address ocean acidification in climate policy apart from the Paris Agreement warming targets of 1.5 and 2&amp;#176;C (Harrould-Kolieb and Herr, 2012). Although these targets mitigate many elements of dangerous climate change, Schleussner et al. (2016) project that carbon emission pathways consistent with 1.5&amp;#176;C cause 90% of coral reef areas between 66&amp;#176;N and 66&amp;#176;S to be at risk of long-term degradation in all but a single model run.&amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;Calculating a future carbon budget based on a temperature goal alone is subject to significant uncertainty, largely due to uncertainties in response of the climate system to forcing and natural carbon sequestration. Here, results from a large observation-constrained model ensemble are presented for pathways that achieve multiple climate targets. The uncertainty in the resulting future carbon budget, compared to the budget for temperature-only targets, is discussed. A secondary aim is to establish a pair of mean ocean pH targets that are analogous with the Paris Agreement targets for global mean warming.&amp;#160;&lt;/p&gt;&lt;p&gt;References&amp;#160;&lt;/p&gt;&lt;p&gt;Friedlingstein P. et al., 2020, Earth System Science Data, DOI: 10.5194/essd-12-3269-2020&lt;/p&gt;&lt;p&gt;Narita, D. et al., 2012, Climate Change, DOI: 10.1007/s10584-011-0383-3&lt;/p&gt;&lt;p&gt;Harrould-Kolieb E.R. et al., 2012, Climate Policy, DOI: 10.1080/14693062.2012.620788&lt;/p&gt;&lt;p&gt;Schleussner C-F. et al., 2016, Earth System Dynamics, DOI: 10.1080/14693062.2012.620788&lt;/p&gt;


2020 ◽  
Vol 7 (3) ◽  
pp. 191-207
Author(s):  
Miguel Barbosa ◽  
Orfeu Bertolami ◽  
Frederico Francisco

In this work, we present a physically motivated Planetary Accounting Framework for the Earth System. We show that the impact of the human activity in terms of the planetary boundary variables can be accounted for in our Landau–Ginzburg phase transition physical formulation. We then use the interaction between climate change and ocean acidification mechanisms to exemplify the relation of the concentration and flux of substances of the planetary boundary variables, as proposed by the accounting framework of Meyer and Newman, with the underlying thermodynamic transformation, quantifiable by the Landau–Ginzburg inspired model.


Sign in / Sign up

Export Citation Format

Share Document