scholarly journals Regional Patterns and Physical Controls of Streamflow Generation across the Conterminous United States

Author(s):  
S. Wu ◽  
J. Zhao ◽  
H. Wang ◽  
M. Sivapalan
2012 ◽  
Vol 9 (6) ◽  
pp. 7035-7084 ◽  
Author(s):  
S. Ye ◽  
M. A. Yaeger ◽  
E. Coopersmith ◽  
L. Cheng ◽  
M. Sivapalan

Abstract. The goal of this paper is to explore the process controls underpinning regional patterns of variations of runoff regime behavior, i.e., the mean seasonal variation of runoff within the year, across the continental United States. The ultimate motivation is to use the resulting process understanding to generate insights into the physical controls of Flow Duration Curves, in view of the close connection between these two alternative signatures of runoff variability. To achieve these aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, which is systematically enhanced through addition of new processes on the basis of model performance assessment in relation to observations, using rainfall-runoff data from 197 United States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the determination of required model complexity are carried out through model-based sensitivity analyses, guided by a performance metric. Results indicated systematic regional trends in dominant processes: snowmelt was a key process control in cold mountainous catchments in the north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the north-east; seasonal vegetation cover dynamics (phenology and interception) were important along the Appalachian mountain range in the east. A simple two-bucket model (with no other additions) was found to be adequate in warm humid catchments along the west coast and in the south-east, with both regions exhibiting strong seasonality, whereas much more complex models are needed in the dry south and south-west. Agricultural catchments in the mid-west were found to be difficult to predict with the use of simple lumped models, due to the strong influence of human activities. Overall, these process controls arose from general east-west (seasonality) and north-south (aridity, temperature) trends in climate (with some exceptions), compounded by complex dynamics of vegetation cover and to a less extent by landscape factors (soils, geology and topography).


2012 ◽  
Vol 16 (11) ◽  
pp. 4447-4465 ◽  
Author(s):  
S. Ye ◽  
M. Yaeger ◽  
E. Coopersmith ◽  
L. Cheng ◽  
M. Sivapalan

Abstract. The goal of this paper is to explore the process controls underpinning regional patterns of variations of streamflow regime behavior, i.e., the mean seasonal variation of streamflow within the year, across the continental United States. The ultimate motivation is to use the resulting process understanding to generate insights into the physical controls of another signature of streamflow variability, namely the flow duration curve (FDC). The construction of the FDC removes the time dependence of flows. Thus in order to better understand the physical controls in regions that exhibit strong seasonal dependence, the regime curve (RC), which is closely connected to the FDC, is studied in this paper and later linked back to the FDC. To achieve these aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, which is systematically enhanced through addition of new processes on the basis of model performance assessment in relation to observations, using rainfall-runoff data from 197 United States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the determination of required model complexity are carried out through model-based sensitivity analyses, guided by a performance metric. Results indicated systematic regional trends in dominant processes: snowmelt was a key process control in cold mountainous catchments in the north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the north-east; seasonal vegetation cover dynamics (phenology and interception) were important along the Appalachian mountain range in the east. A simple two-bucket model (with no other additions) was found to be adequate in warm humid catchments along the west coast and in the south-east, with both regions exhibiting strong seasonality, whereas much more complex models are needed in the dry south and south-west. Agricultural catchments in the mid-west were found to be difficult to predict with the use of simple lumped models, due to the strong influence of human activities. Overall, these process controls arose from general east-west (seasonality) and north-south (aridity, temperature) trends in climate (with some exceptions), compounded by complex dynamics of vegetation cover and to a less extent by landscape factors (soils, geology and topography).


2012 ◽  
Vol 16 (11) ◽  
pp. 4483-4498 ◽  
Author(s):  
M. Yaeger ◽  
E. Coopersmith ◽  
S. Ye ◽  
L. Cheng ◽  
A. Viglione ◽  
...  

Abstract. The paper reports on a four-pronged study of the physical controls on regional patterns of the flow duration curve (FDC). This involved a comparative analysis of long-term continuous data from nearly 200 catchments around the US, encompassing a wide range of climates, geology, and ecology. The analysis was done from three different perspectives – statistical analysis, process-based modeling, and data-based classification – followed by a synthesis, which is the focus of this paper. Streamflow data were separated into fast and slow flow responses, and associated signatures, and both total flow and its components were analyzed to generate patterns. Regional patterns emerged in all aspects of the study. The mixed gamma distribution described well the shape of the FDC; regression analysis indicated that certain climate and catchment properties were first-order controls on the shape of the FDC. In order to understand the spatial patterns revealed by the statistical study, and guided by the hypothesis that the middle portion of the FDC is a function of the regime curve (RC, mean within-year variation of flow), we set out to classify these catchments, both empirically and through process-based modeling, in terms of their regime behavior. The classification analysis showed that climate seasonality and aridity, either directly (empirical classes) or through phenology (vegetation processes), were the dominant controls on the RC. Quantitative synthesis of these results determined that these classes were indeed related to the FDC through its slope and related statistical parameters. Qualitative synthesis revealed much diversity in the shapes of the FDCs even within each climate-based homogeneous class, especially in the low-flow tails, suggesting that catchment properties may have become the dominant controls. Thus, while the middle portion of the FDC contains the average response of the catchment, and is mainly controlled by climate, the tails of the FDC, notably the low-flow tails, are mainly controlled by catchment properties such as geology and soils. The regime behavior explains only part of the FDC; to gain a deeper understanding of the physical controls on the FDC, these extremes must be analyzed as well. Thus, to completely separate the climate controls from the catchment controls, the roles of catchment properties such as soils, geology, topography etc. must be explored in detail.


2018 ◽  
Vol 374 (1763) ◽  
pp. 20170394 ◽  
Author(s):  
Daniel S. Park ◽  
Ian Breckheimer ◽  
Alex C. Williams ◽  
Edith Law ◽  
Aaron M. Ellison ◽  
...  

Phenology is a key biological trait that can determine an organism's survival and provides one of the clearest indicators of the effects of recent climatic change. Long time-series observations of plant phenology collected at continental scales could clarify latitudinal and regional patterns of plant responses and illuminate drivers of that variation, but few such datasets exist. Here, we use the web tool CrowdCurio to crowdsource phenological data from over 7000 herbarium specimens representing 30 diverse flowering plant species distributed across the eastern United States. Our results, spanning 120 years and generated from over 2000 crowdsourcers, illustrate numerous aspects of continental-scale plant reproductive phenology. First, they support prior studies that found plant reproductive phenology significantly advances in response to warming, especially for early-flowering species. Second, they reveal that fruiting in populations from warmer, lower latitudes is significantly more phenologically sensitive to temperature than that for populations from colder, higher-latitude regions. Last, we found that variation in phenological sensitivities to climate within species between regions was of similar magnitude to variation between species. Overall, our results suggest that phenological responses to anthropogenic climate change will be heterogeneous within communities and across regions, with large amounts of regional variability driven by local adaptation, phenotypic plasticity and differences in species assemblages. As millions of imaged herbarium specimens become available online, they will play an increasingly critical role in revealing large-scale patterns within assemblages and across continents that ultimately can improve forecasts of the impacts of climatic change on the structure and function of ecosystems. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the Anthropocene’.


2012 ◽  
Vol 16 (11) ◽  
pp. 4435-4446 ◽  
Author(s):  
L. Cheng ◽  
M. Yaeger ◽  
A. Viglione ◽  
E. Coopersmith ◽  
S. Ye ◽  
...  

Abstract. The flow duration curve (FDC) is a classical method used to graphically represent the relationship between the frequency and magnitude of streamflow. In this sense it represents a compact signature of temporal runoff variability that can also be used to diagnose catchment rainfall-runoff responses, including similarity and differences between catchments. This paper is aimed at extracting regional patterns of the FDCs from observed daily flow data and elucidating the physical controls underlying these patterns, as a way to aid towards their regionalization and predictions in ungauged basins. The FDCs of total runoff (TFDC) using multi-decadal streamflow records for 197 catchments across the continental United States are separated into the FDCs of two runoff components, i.e., fast flow (FFDC) and slow flow (SFDC). In order to compactly display these regional patterns, the 3-parameter mixed gamma distribution is employed to characterize the shapes of the normalized FDCs (i.e., TFDC, FFDC and SFDC) over the entire data record. This is repeated to also characterize the between-year variability of "annual" FDCs for 8 representative catchments chosen across a climate gradient. Results show that the mixed gamma distribution can adequately capture the shapes of the FDCs and their variation between catchments and also between years. Comparison between the between-catchment and between-year variability of the FDCs revealed significant space-time symmetry. Possible relationships between the parameters of the fitted mixed gamma distribution and catchment climatic and physiographic characteristics are explored in order to decipher and point to the underlying physical controls. The baseflow index (a surrogate for the collective impact of geology, soils, topography and vegetation, as well as climate) is found to be the dominant control on the shapes of the normalized TFDC and SFDC, whereas the product of maximum daily precipitation and the fraction of non-rainy days was found to control the shape of the FFDC. These relationships, arising from the separation of total runoff into its two components, provide a potential physical basis for regionalization of FDCs, as well as providing a conceptual framework for developing deeper process-based understanding of the FDCs.


2017 ◽  
Vol 18 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Edwin Sumargo ◽  
Daniel R. Cayan

Abstract This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.


Author(s):  
Robert B. Herrmann ◽  
Charles J. Ammon ◽  
Harley M. Benz ◽  
Asiye Aziz-Zanjani ◽  
Joshua Boschelli

Abstract The variation of phase and group velocity dispersion of Love and Rayleigh waves was determined for the continental United States and adjacent Canada. By processing ambient noise from the broadband channels of the Transportable Array (TA) of USArray and several Program for the Array Seismic Studies of the Continental Lithosphere experiments and using some earthquake recordings, the effort was focused on determining dispersion down to periods as short as 2 s. The relatively short distances between TA stations permitted the use of a 25  km×25  km grid for the four independent tomographic inversions (Love and Rayleigh and phase and group velocity). One reason for trying to obtain short-period dispersion was to have a data set capable of constraining upper crust velocity models for use in determining regional moment tensors. The benefit of focusing on short-period dispersion is apparent in the tomography maps—shallow geologic structures such as the Mid-Continent Rift, and the Michigan, Illinois, Anadarko, Arkoma, and Appalachian basins are imaged. In our processing, we noted that the phase velocities were more robustly determined than the group velocities. We also noted that the inability to obtain dispersion at short periods shows distinct regional patterns that may be related to the local upper crust structure.


2017 ◽  
Vol 30 (4) ◽  
pp. 1307-1326 ◽  
Author(s):  
Siyu Zhao ◽  
Yi Deng ◽  
Robert X. Black

Abstract Regional patterns of extreme precipitation events occurring over the continental United States are identified via hierarchical cluster analysis of observed daily precipitation for the period 1950–2005. Six canonical extreme precipitation patterns (EPPs) are isolated for the boreal warm season and five for the cool season. The large-scale meteorological pattern (LMP) inducing each EPP is identified and used to create a “base function” for evaluating a climate model’s potential for accurately representing the different patterns of precipitation extremes. A parallel analysis of the Community Climate System Model, version 4 (CCSM4), reveals that the CCSM4 successfully captures the main U.S. EPPs for both the warm and cool seasons, albeit with varying degrees of accuracy. The model’s skill in simulating each EPP tends to be positively correlated with its capability in representing the associated LMP. Model bias in the occurrence frequency of a governing LMP is directly related to the frequency bias in the corresponding EPP. In addition, however, discrepancies are found between the CCSM4’s representation of LMPs and EPPs over regions such as the western United States and Midwest, where topographic precipitation influences and organized convection are prominent, respectively. In these cases, the model representation of finer-scale physical processes appears to be at least equally important compared to the LMPs in driving the occurrence of extreme precipitation.


1987 ◽  
Vol 16 (6) ◽  
pp. 881
Author(s):  
T. L. Scheid-Cook ◽  
Arnold S. Linsky ◽  
Murray A. Straus

Sign in / Sign up

Export Citation Format

Share Document