lysophosphatidic acid acyltransferase
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 3)

2020 ◽  
Author(s):  
Harrie van Erp ◽  
Fiona M Bryant ◽  
Jose Martin-Moreno ◽  
Peter J Eastmond

ABSTRACTIn human milk fat, palmitic acid (16:0) is esterified to the middle (sn-2 or β) position on the glycerol backbone and oleic acid (18:1) predominantly to the outer positions, giving the triacylglycerol (TG) a distinctive stereoisomeric structure that is believed to assist nutrient absorption in the infant gut. However, the fat used in most infant formulas is derived from plants, which preferentially esterify 16:0 to the outer positions. We have previously showed that the metabolism of the model oilseed Arabidopsis thaliana can be engineered to incorporate 16:0 into the middle position of TG. However, the fatty acyl composition of Arabidopsis seed TG does not mimic human milk, which is rich in both 16:0 and 18:1 and is defined by the high abundance of the TG molecular species 1,3-olein-2-palmitin (OPO). Here we have constructed an Arabidopsis fatty acid biosynthesis 1-1 fatty acid desaturase 2 fatty acid elongase 1 mutant with around 20% 16:0 and ~70% 18:1 in its seeds and we have engineered it to esterify more than 80% of the 16:0 to the middle position of TG, using heterologous expression of the human lysophosphatidic acid acyltransferase isoform AGPAT1, combined with suppression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 and PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE. Our data suggest that oilseeds can be engineered to produce TG that is rich in OPO, which is an important structured fat ingredient used in infant formulas.


2020 ◽  
Vol 103 (6) ◽  
pp. 2151-2167
Author(s):  
Yongtai Yin ◽  
Zhenyi Guo ◽  
Kang Chen ◽  
Tian Tian ◽  
Jiajun Tan ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 745
Author(s):  
Yosuke Toyotake ◽  
Masayoshi Nishiyama ◽  
Fumiaki Yokoyama ◽  
Takuya Ogawa ◽  
Jun Kawamoto ◽  
...  

Lysophosphatidic acid acyltransferase (LPAAT) introduces fatty acyl groups into the sn-2 position of membrane phospholipids (PLs). Various bacteria produce multiple LPAATs, whereas it is believed that Escherichia coli produces only one essential LPAAT homolog, PlsC—the deletion of which is lethal. However, we found that E. coli possesses another LPAAT homolog named YihG. Here, we show that overexpression of YihG in E. coli carrying a temperature-sensitive mutation in plsC allowed its growth at non-permissive temperatures. Analysis of the fatty acyl composition of PLs from the yihG-deletion mutant (∆yihG) revealed that endogenous YihG introduces the cis-vaccenoyl group into the sn-2 position of PLs. Loss of YihG did not affect cell growth or morphology, but ∆yihG cells swam well in liquid medium in contrast to wild-type cells. Immunoblot analysis showed that FliC was highly expressed in ∆yihG cells, and this phenotype was suppressed by expression of recombinant YihG in ∆yihG cells. Transmission electron microscopy confirmed that the flagellar structure was observed only in ∆yihG cells. These results suggest that YihG has specific functions related to flagellar formation through modulation of the fatty acyl composition of membrane PLs.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Zhang ◽  
Liluo Nie ◽  
Qiqi Cheng ◽  
Yongtai Yin ◽  
Kang Chen ◽  
...  

Abstract Background Brassica napus is one of the most important oilseed crops, and can supply considerable amounts of edible oil as well as provide raw materials for the production of biodiesel in the biotechnology industry. Lysophosphatidic acid acyltransferase (LPAT), a key enzyme in the Kennedy pathway, catalyses fatty acid chains into 3-phosphoglycerate and promotes further production of oil in the form of triacylglycerol. However, because B. napus is an allotetraploid with two subgenomes, the precise genes which involved in oil production remain unclear due to the intractability of efficiently knocking out all copies with high genetic redundancy. Therefore, a robust gene editing technology is necessary for gene function analysis. Results An efficient gene editing technology was developed for the allotetraploid plant B. napus using the CRISPR-Cas9 system. Previous studies showed poor results in either on-target or off-target activity in B. napus. In the present study, four single-gRNAs and two multi-gRNAs were deliberately designed from the conserved coding regions of BnLPAT2 which has seven homologous genes, and BnLPAT5, which has four homologous genes. The mutation frequency was found to range from 17 to 68%, while no mutation was observed in the putative off-target sites. The seeds of the Bnlpat2/Bnlpat5 mutant were wizened and showed enlarged oil bodies, disrupted distribution of protein bodies and increased accumulation of starch in mature seeds. The oil content decreased, with an average decrease of 32% for Bnlpat2 lines and 29% for Bnlpat5 lines in single-gRNA knockout lines, and a decline of 24% for Bnlpat2 mutant lines (i.e., g123) and 39% for Bnlpat2/Bnlpat5 double mutant lines (i.e., g134) in multi-gRNA knockout lines. Conclusions Seven BnLPAT2 homologous genes and four BnLPAT5 homologous genes were cleaved completely using the CRISPR-Cas9 system, which indicated that it is effective for editing all homologous genes in allotetraploid rapeseed, despite the relatively low sequence identities of both gene families. The size of the oil bodies increased significantly while the oil content decreased, confirming that BnLPAT2 and BnLPAT5 play a role in oil biosynthesis. The present study lays a foundation for further oil production improvement in oilseed crop species.


2019 ◽  
Vol 33 (5) ◽  
pp. 6655-6666 ◽  
Author(s):  
Xiaodong Zhang ◽  
Xitao Xie ◽  
Bradlee L. Heckmann ◽  
Alicia M. Saarinen ◽  
Haiwei Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document