dry particle coating
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 12 (4) ◽  
pp. 125
Author(s):  
Hediye Yorulmaz ◽  
Sümeyye Özuzun ◽  
Burak Uzal ◽  
Serhan İlkentapar ◽  
Uğur Durak ◽  
...  

It is known that nano-and microparticles have been very popular in recent years since their advantages. However, due to the very small size of such materials, they have very high tendency to agglomeration particularly for nanoparticles. Therefore, it is critical that they are properly distributed in the system to which they are added. This paper investigated the effects of dry particle coating with nano-and microparticles to solve the agglomeration problem. For a clear evaluation, paste samples were preferred to detemine the compressive strength. Nano-SiO2 and nano-CaCO3, micro-CaCO3 and micro-SiO2, also known as silica fume, were selected as particulate additives. It was studied by the addition of various percentages (0.3, 0.7, 1, 2, 3 and 5%) of nano-and microparticles in cementitious systems, replacing cement by weight with and without dry particle coating. Dry particle coating was made by using a high-speed paddle mixer. Portland cement and additive particles were mixed at 1500 rpm for 30 seconds in high-speed powder mixer designed for this purpose. The 3-day compressive strength of the cement-based samples to which particles were added at the specified rates was determined and the effect of the dry particle coating on the early strength was investigated. According to the results, it was observed that the production of paste with the dry particle coating technique gave higher compressive strength compared to the production of paste directly in early period. Especially with dry particle coating, compressive strength increased more than 100% in paste samples containing 0.3% nano-SiO2 compared to direct addition without coating.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 580
Author(s):  
Nicholas Bungert ◽  
Mirjam Kobler ◽  
Regina Scherließ

High-shear mixer coatings as well as mechanofusion processes are used in the particle-engineering of dry powder inhalation carrier systems. The aim of coating the carrier particle is usually to decrease carrier–drug adhesion. This study comprises the in-depth comparison of two established dry particle coating options. Both processes were conducted with and without a model additive (magnesium stearate). In doing so, changes in the behaviour of the processed particles can be traced back to either the process or the additive. It can be stated that the coarse model carrier showed no significant changes when processed without additives. By coating the particles with magnesium stearate, the surface energy decreased significantly. This leads to a significant enhancement of the aerodynamic performance of the respective carrier-based blends. Comparing the engineered carriers with each other, the high-shear mixer coating shows significant benefits, namely, lower drug–carrier adhesion and the higher efficiency of the coating process.


Polymer ◽  
2020 ◽  
Vol 186 ◽  
pp. 122044
Author(s):  
Shuting Xi ◽  
Peiyao Zhang ◽  
Yajiang Huang ◽  
Miqiu Kong ◽  
Qi Yang ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206651 ◽  
Author(s):  
Eman Z. Dahmash ◽  
Ali Al-khattawi ◽  
Affiong Iyire ◽  
Hamad Al-Yami ◽  
Thomas J. Dennison ◽  
...  

2017 ◽  
Vol 104 ◽  
pp. 344-355 ◽  
Author(s):  
Zhonghui Huang ◽  
Wannan Xiong ◽  
Kuriakose Kunnath ◽  
Sayani Bhaumik ◽  
Rajesh N. Davé

2015 ◽  
Vol 21 (6) ◽  
pp. 697-704 ◽  
Author(s):  
Christina Blümel ◽  
Marius Sachs ◽  
Tobias Laumer ◽  
Bettina Winzer ◽  
Jochen Schmidt ◽  
...  

Purpose – The purpose of this paper is to demonstrate the processability of cohesive PE-HD particles in laser beam melting processes (LBM) of polymers. Furthermore, we present a characterization method for polymer particles, which can predict the quality of the powder deposition via LBM processes. Design/methodology/approach – This study focuses on the application of dry particle coating processes to increase flowability and bulk density of PE-HD particles. Both has been measured and afterwards validated via powder deposition of PE-HD particles in a LBM machine. Findings – For efficient coating in a dry particle coating process, the PE-HD particles and the attached nanoparticles need to show similar surface chemistry, i.e. both need to behave either hydrophobic or hydrophilic. It is demonstrated that dry particle coating is appropriate to enhance flowability and bulk density of PE-HD particles and hence considerably improves LBM processes and the resulting product quality. Originality/value – At present, in LBM processes mainly polyamide (PA), 12 particles are used, which are so far quite expensive in comparison to, for example, PE-HD particles. This work provides a unique and versatile method for nanoparticulate surface modification which may be applied to a wide variety of materials. After the coating, the particles are applicable for the LBM process. Our results provide a correlation between flowability and bulk density and the resulting product quality.


Sign in / Sign up

Export Citation Format

Share Document