scholarly journals Coralporosis: Ocean Acidification Leaves Deep-Sea Coral Reefs at Risk of Collapse

Oceanography ◽  
2021 ◽  
Vol 34 (2) ◽  
Author(s):  
Cheryl Dybas

As we age, our skeletons often become riddled with osteoporosis, a disease in which the body loses too much bone. As a result, our hips and wrists become weak and may break. Could the same thing happen to the skeletons of coral reefs? Recent research says yes, and points to a weakening of deep-sea corals’ “bones” from ocean acidification.

2021 ◽  
Author(s):  
◽  
Malindi Gammon

<p>Calcifying corals provide important habitat complexity in the deep-sea and are consistently associated with a biodiversity of fish and other invertebrates. Little is understood about how deep-sea corals may respond to predicted scenarios of ocean acidification (OA), but any predicted changes will have wider impacts on the ecosystem.   Colonies of Solenosmilia variabilis, a species of deep-sea coral found in the waters surrounding New Zealand, were collected during a cruise in March 2014 from the Louisville Seamount chain. Over 12-months, coral samples were maintained in temperature controlled (~3.5°C) continuous flow-through tanks. A control group of coral colonies was held in seawater with pH 7.88 and a treatment group in pH 7.65. These two pH levels were designed to reflect current pH conditions and end-of-century conditions, respectively. In addition to investigating changes in growth and morphology, measurements of respiration and intracellular pH (pHi) were taken after a mid-term (6 months for respiration; 9 months for pHi) and long-term (12 months for both respiration and pHi) exposure period. An established method used in measuring the pHi of shallow water corals was adapted for use with deep-sea corals for the first time. pHi was independent from the seawater treatment and ranged from 7.67 – 8.30. Respiration rate was not influenced by the reduced seawater pH tested here. Respiration rates were highly variable, ranging from 0.065 to 1.756 μg O2 g-1 protein h-1 and pHi ranged from 7.67 – 8.30. Yearly growth rates were also variable, ranging from 0.53 to 3.068 mm year-1, and again showed no detectable difference between the treatment and control colonies. However, a loss in the colouration of coral skeletons was observed in the treatment group and was attributed to a loss of tissue. This could indicate a reallocation of energy, allowing for the maintenance of those other physiological parameters measured here (e.g. growth and respiration rates). If this is indeed occurring, it would be consistent with the idea of phenotypic plasticity, where corals can alternate between soft-bodied and fossilizing forms, allowing them to survive past periods of environmental stress.   This research is an important first step towards understanding the sensitivity of deep-sea corals to OA and the potential for acclimation, and suggests that in many respects, S. variabilis might not be susceptible to end-of-century projections of OA. Nevertheless, the observed tissue loss is interesting and warrants further investigation to assess its long-term implications. Furthermore, the impacts of greater levels of OA, and the interactive effects of other ecological parameters such as food availability, need to be tested.</p>


2021 ◽  
Author(s):  
◽  
Malindi Gammon

<p>Calcifying corals provide important habitat complexity in the deep-sea and are consistently associated with a biodiversity of fish and other invertebrates. Little is understood about how deep-sea corals may respond to predicted scenarios of ocean acidification (OA), but any predicted changes will have wider impacts on the ecosystem.   Colonies of Solenosmilia variabilis, a species of deep-sea coral found in the waters surrounding New Zealand, were collected during a cruise in March 2014 from the Louisville Seamount chain. Over 12-months, coral samples were maintained in temperature controlled (~3.5°C) continuous flow-through tanks. A control group of coral colonies was held in seawater with pH 7.88 and a treatment group in pH 7.65. These two pH levels were designed to reflect current pH conditions and end-of-century conditions, respectively. In addition to investigating changes in growth and morphology, measurements of respiration and intracellular pH (pHi) were taken after a mid-term (6 months for respiration; 9 months for pHi) and long-term (12 months for both respiration and pHi) exposure period. An established method used in measuring the pHi of shallow water corals was adapted for use with deep-sea corals for the first time. pHi was independent from the seawater treatment and ranged from 7.67 – 8.30. Respiration rate was not influenced by the reduced seawater pH tested here. Respiration rates were highly variable, ranging from 0.065 to 1.756 μg O2 g-1 protein h-1 and pHi ranged from 7.67 – 8.30. Yearly growth rates were also variable, ranging from 0.53 to 3.068 mm year-1, and again showed no detectable difference between the treatment and control colonies. However, a loss in the colouration of coral skeletons was observed in the treatment group and was attributed to a loss of tissue. This could indicate a reallocation of energy, allowing for the maintenance of those other physiological parameters measured here (e.g. growth and respiration rates). If this is indeed occurring, it would be consistent with the idea of phenotypic plasticity, where corals can alternate between soft-bodied and fossilizing forms, allowing them to survive past periods of environmental stress.   This research is an important first step towards understanding the sensitivity of deep-sea corals to OA and the potential for acclimation, and suggests that in many respects, S. variabilis might not be susceptible to end-of-century projections of OA. Nevertheless, the observed tissue loss is interesting and warrants further investigation to assess its long-term implications. Furthermore, the impacts of greater levels of OA, and the interactive effects of other ecological parameters such as food availability, need to be tested.</p>


2021 ◽  
Vol 12 (1) ◽  
pp. 347-360
Author(s):  
Julien Labia

A migrant camp is a ‘non-place’ where personal identity is put at risk. Music is a means of personal adaptation in camps, even if it means allowing little place for the real reasons for displacement of the very people shaping these new hybridizations of music. The present power of music in such a place is to create strong relationships, ‘shortcutting’ both narration and the longer time needed in order to create relationships. The kind of personal advantage it is for someone to be a musician is a topic surprisingly forgotten, obscured by theoretical habits of seeing music essentially as an expressive activity directed to an audience, or as being a communicative activity. Music has a performative power different from language, as a non-verbal art having a strong and direct relationship to the body. Musical interactions on the field give migrants the ability to balance their problematic situation of refugees, shaping a real present.


2015 ◽  
Vol 73 (3) ◽  
pp. 613-619 ◽  
Author(s):  
Tae Won Kim ◽  
Josi Taylor ◽  
Chris Lovera ◽  
James P. Barry

Abstract Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species due to the relatively stable conditions in deep waters for most parameters (e.g. temperature, salinity, oxygen, and pH). To explore the potential for deep-sea hermit crabs (Pagurus tanneri) to acclimate to future ocean acidification, we compared their olfactory and metabolic performance under ambient (pH ∼7.6) and expected future (pH ∼7.1) conditions. After exposure to reduced pH waters, metabolic rates of hermit crabs increased transiently and olfactory behaviour was impaired, including antennular flicking and prey detection. Crabs exposed to low pH treatments exhibited higher individual variation for both the speed of antennular flicking and speed of prey detection, than observed in the control pH treatment, suggesting that phenotypic diversity could promote adaptation to future ocean acidification.


2004 ◽  
Vol 219 (3-4) ◽  
pp. 297-309 ◽  
Author(s):  
Norbert Frank ◽  
Martine Paterne ◽  
Linda Ayliffe ◽  
Tjeerd van Weering ◽  
Jean-Pierre Henriet ◽  
...  

2021 ◽  
Author(s):  
Christopher Jury ◽  
Keisha Bahr ◽  
Evan Barba ◽  
Russell Brainard ◽  
Annick Cros ◽  
...  

Abstract Coral reefs are among the most sensitive ecosystems affected by ocean acidification and warming, and are predicted to shift from net accreting calcifier-dominated systems to net eroding algal-dominated systems over the coming decades. Here we present a long-term experimental study examining the responses of entire mesocosm coral reef communities to acidification (-0.2 pH units), warming (+ 2°C), and combined future ocean (-0.2 pH, + 2°C) treatments. We show that under future ocean conditions, net calcification rates declined yet remained positive, corals showed reduced abundance yet were not extirpated, and community composition shifted while species richness was maintained. Our results suggest that under Paris Climate Agreement targets, coral reefs could persist in an altered functional state rather than collapse.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1151
Author(s):  
Olev Vinn

Polychaete annelids are a very important group of calcifiers in the modern oceans. They can produce calcite, aragonite, and amorphous phosphates. Serpulids possess very diverse tube ultra-structures, several unique to them. Serpulid tubes are composed of aragonite or calcite or a mixture of both polymorphs. The serpulid tubes with complex oriented microstructures, such as lamello fibrillar, are exclusively calcitic, whereas tubes with prismatic structures can be composed either of calcite or aragonite. In serpulids, the calcareous opercula also have complex microstructures. Evolutionarily, calcitic serpulid taxa belong to one clade and the aragonitic taxa belong to another clade. Modern ocean acidification affects serpulid biomineralization. Serpulids are capable of biomineralization in extreme environments, such as the deepest part (hadal zone) of the ocean. The tubes of calcareous sabellids are aragonitic and have two layers, the inner irregular spherulitic prismatic layer and the outer spherulitic layer. The tube wall of cirratulids is composed of aragonitic lamellae with a spherulitic prismatic structure. In some other polychaetes, biominerals are formed in different parts of the animal body, such as chaetae or body shields, or occur within the body as granule-shaped or rod-shaped inclusions.


Sign in / Sign up

Export Citation Format

Share Document