scholarly journals Turbulent heat transfer enhancement in tubular heat exchangers with different twisted tape inserts

2021 ◽  
Vol 15 (3) ◽  
pp. 8364-8378
Author(s):  
SADMAN HASSAN LABIB ◽  
M. R. A. Himel ◽  
J.I. Ali ◽  
A.R. Mim ◽  
M.J. Hossain ◽  
...  

Experimental and numerical analyses are carried out to investigate the influence of twisted tape inserts on the heat transfer and the flow behavior in double tube heat exchangers. First, all the performance factors, namely the Nusselt number, friction factor, and thermal performance factor, were studied for a basic heat exchanger (BHE). Afterwards, twisted tapes with three different twist ratios (7.5, 6, and 4.5) were inserted inside the inner tube of the BHE, which resulted in three different modified heat exchangers (MHEs). For the numerical study, a 3D numerical model is developed with the k-ε RNG turbulent model to visualize the flow and the heat transfer behavior inside the heat exchangers. In both studies, turbulent flow field is maintained, ranging Reynolds number from 15000 to 50000.  From the experimental result, an enhanced heat transfer, characterized by the performance factors, is found for all the MHEs compared to the BHE. The most enhanced thermal performance factor is achieved for the MHE with the lowest twist ratio. Finally, a good agreement between obtained numerical and experimental results reveals that the present numerical model can reliably predict the flow and heat transfer behavior in double tube heat exchangers.

2020 ◽  
pp. 90-90 ◽  
Author(s):  
Houari Ameur ◽  
Djamel Sahel ◽  
Younes Menni

The present paper is a numerical investigation on the performance of perforated baffles in a plate-fin heat exchanger. Two types of perforations are studied, namely the circular and elliptical shapes. Values of heat transfer coefficient, pressure drop and thermal performance factor are determined for both cases and compared with those for a smooth channel. Also, the flow fields and heat transfer characteristics are determined for different fluids and various Reynolds numbers. The working fluids are complex, non-Newtonian and have an inelastic shear thinning behavior. The obtained results showed a good enhancement in the thermal performance factor by the suggested design in baffles. In the case of low viscous fluids, the elliptical perforated baffle performs better (by about 63.4%) than the circular one for all values of Re. But for highly viscous fluids, the elliptical perforation shows higher thermal performance than the circular hole by about 25% for low Re and 27% for high Re. The overall thermal performance factors are about 1.55 and 1.74 for the circular and elliptical perforations, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Sami D. Salman ◽  
Abdul Amir H. Kadhum ◽  
Mohd S. Takriff ◽  
Abu Bakar Mohamad

This paper presents a comparison study on thermal performance conic cut twist tape inserts in laminar flow of nanofluids through a constant heat fluxed tube. Three tape configurations, namely, quadrant cut twisted tape (QCT), parabolic half cut twisted tape (PCT), and triangular cut twisted (VCT) of twist ratioy= 2.93 and cut depthde= 0.5 cm were used with 1% and 2% volume concentration of SiO2/water and TiO2/water nanofluids. Typical twist tape with twist ratio ofy= 2.93 was used for comparison. The results show that the heat transfer was enhanced by increasing of Reynolds number and nanoparticles concentration of nanofluid. The results have also revealed that the use of twist tape enhanced the heat transfer coefficient significantly and maximum heat transfer enhancement was achieved by the presence of triangular cut twist tape insert with 2% volume concentration of SiO2nanofluid. Over the range investigated, the maximum thermal performance factor of 5.13 is found with the simultaneous use of the SiO2nanofluid at 2% volume concentration VCT at Reynolds number of 220. Furthermore, new empirical correlations for Nusselt number, friction factor, and thermal performance factor are developed and reported.


CFD letters ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 20-31
Author(s):  
Birlie Fekadu ◽  
Harish H.V ◽  
Manjunath. K

Heat transfer augmentation is an important concern due to the increase in heat management problems in thermal systems. There are many techniques for enhancement of heat transfer, by active and passive techniques. A commonly used passive technique to enhance heat transfer is by inserting twisted tapes in tubes. This work presents a numerical study on Nusselt number, friction factor, and thermal performance characteristics through a circular pipe built-in with/without dimples on twisted tape. The analysis results for a turbulent flow range of 4500≤Re≤20000 are obtained with a twist ratio of the strip is 3.0. The analysis is carried for full-length tape with constant heat flux. The governing equations are numerically solved by a finite volume method using the RNG κ–ε model. The simulation results of Nusselt number versus Reynolds number of the plain, plain twisted tape and dimple twisted tape tube with the experimental data give a variation of 4.15%, 3.89%, and 7.65%. The friction factor of the dimple twisted tape tube is 60 to 70% higher than that of the plain twisted tube at different Reynolds numbers. The thermal performance factor of the dimple twisted tape and plain twisted tape tube is 30 to 35% respectively higher than that of the plain tube. Due to thermal performance factor is above unity yields a promising heat transfer enhancement. By the present study, an optimum geometrical parameter can be selected for use in heat exchangers.


Author(s):  
Harish H. V. ◽  
Manjunath K. ◽  
Rangaswamy T.

In order to improve thermo-hydraulic performance of laminar flow various techniques has been used among which a plain tube with twisted tape insert is widely used. The main objective is to numerically study flow field in order to enhance heat transfer, through a circular pipe built in with/without Dimples on twisted strip. Effect of plain and dimple strip on thermo hydraulic performance discussed. The analysis results for laminar range of 800<Re<2000 is obtained with twist ratio of the strip is 3.0. Analysis is carried for full length tape with constant heat flux. The simulation results of Nusselt number versus Reynolds number of the plain, plain twisted tape and Dimple twisted tape with the experimental data give variation of 2.5, 5.75 and 9.5%. The friction factor of Dimple twisted tape tube is 6 to 13 times that of the plain tube. The thermal performance factor of the Dimple twisted tape and plain twisted tape tube is 4 to 15% and 3 to 12 % respectively higher than that of plain tube. Due to increase in thermal performance factor of induced strip with dimples there is an intensification of heat transfer obtained through circular duct with dimple twisted tape insert than that of plain twisted tape and plain pipe. The use of a twisted tube compounded with dimples is feasible in terms of energy saving at lower Reynolds numbers. Present study is applicable for design of compact heat exchanger in order to optimize energy consumption.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8593
Author(s):  
Muneerah Al Nuwairan ◽  
Basma Souayeh

This numerical investigation presents the effects of the position of baffles in the shape of a circle’s segment placed inside a circular channel to improve the thermal and flow performance of a solar air heater. Three different baffles’ positions with Reynolds number varying between 10,000 to 50,000 were investigated computationally. The k-omega SST model was used for solving the governing equations. Air was taken as the working fluid. Three pitch ratios (Y = 3, 4, and 5) were considered, while the height of the baffles remained fixed. The result showed an enhancement in Nusselt number, friction factor, j-factor, and thermal performance factor. Staggered exit-length baffles showed maximum enhancement in heat transfer and pressure drop, while inline inlet-length baffles showed the least enhancement. For a pitch ratio of Y = 3.0, the enhancement in all parameters was the highest, while for Y = 5.0, the enhancement in all parameters was the least. The highest thermal performance factor of 1.6 was found for SEL at Y = 3.0.


2013 ◽  
Vol 561 ◽  
pp. 547-552
Author(s):  
Peng Jiang ◽  
Hua Yan ◽  
Zhen Zhang ◽  
Yu Mei Ding ◽  
Wei Min Yang

This work presents the effect of V cut and square cut rotors in circular tubes for turbulent heat transfer using computational fluid dynamics (CFD) modeling. The computational results are in good agreement with experimental data. The obtained results reveal that the use of square cut rotors leads to higher Nusselt number than use of V cut rotors. The results also show that the heat transfer rate, friction factor and thermal performance factor of rotors with square cut increase with the increase of width (a) and depth (b) of rotors’ cut. Square cut rotors with a=b=3 yields higher mean thermal performance factor than those with other width and depth, a=b=1, 2 and the highest thermal performance factor of square cut rotors at a=b=1, 2, 3 are found to be 2.08, 2.11 and 2.13.


Author(s):  
Ramesh Erelli ◽  
Arun Saha

Abstract The combined experimental and Large Eddy Simulations (LES) were performed in the stationary two-pass duct of aspect ratio (AR) 1:2. The experiments were conducted with three different rib arrangements, namely 60° V, 60° V-IV, and broken 60° V-IV ribs, and analysis was carried out with Reynolds numbers of 45,000, 60,000, and 75,000. The infrared thermography (IRT) technique is employed to obtain the local temperature distribution on heated smooth and ribbed surfaces. In all ribbed cases, the copper ribs are glued to the heated surface with a fixed rib height-to-hydraulic diameter (e / Dh) ratio is 0.125 and the rib pitch-to-height ratio (P / e) is 10 and 5 for continuous and broken ribs, respectively. In addition, LES turbulence model was adopted for carrying out simulation to understand the flow and heat transfer behavior in ducts populated with all three V-shaped ribs. The comparison of the time-averaged thermal fields generated using computations has been made with experimentally measured Nusselt numbers, friction factors, thermal performance factor (TPF), and Reynolds analogy performance parameter (RAPP) for all cases. The overall thermal performance factor was found to be quantitatively within 8.0 - 10.66% between experimental and numerical results. Among all the cases, the 60° V-IV ribbed duct provides the best TPF and RAPP than the other two ribbed ducts, whereas the smooth duct shows poor TPF.


Sign in / Sign up

Export Citation Format

Share Document