scholarly journals HIV-1 Uncoating and Reverse Transcription Require eEF1A Binding to Surface-Exposed Acidic Residues of the Reverse Transcriptase Thumb Domain

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00316-18 ◽  
Author(s):  
Daniel J. Rawle ◽  
Dongsheng Li ◽  
Joakim E. Swedberg ◽  
Lu Wang ◽  
Dinesh C. Soares ◽  
...  

ABSTRACTOnce HIV-1 enters a cell, the viral core is uncoated by a poorly understood mechanism and the HIV-1 genomic RNA is reverse transcribed into DNA. Host cell factors are essential for these processes, although very few reverse transcription complex binding host cell factors have been convincingly shown to affect uncoating or reverse transcription. We previously reported that cellular eukaryotic translation elongation factor 1A (eEF1A) interacts tightly and directly with HIV-1 reverse transcriptase (RT) for more efficient reverse transcription. Here we report that the surface-exposed acidic residues in the HIV-1 RT thumb domain alpha-J helix and flanking regions are important for interaction with eEF1A. Mutation of surface-exposed acidic thumb domain residues D250, E297, E298, and E300 to arginine resulted in various levels of impairment of the interaction between RT and eEF1A. This indicates that this negatively charged region in the RT thumb domain is important for interaction with the positively charged eEF1A protein. The impairment of RT and eEF1A interaction by the RT mutations correlated with the efficiency of reverse transcription, uncoating, and infectivity. The best example of this is the strictly conserved E300 residue, where mutation significantly impaired the interaction of RT with eEF1A and virus replication in CD4+T cells without affectingin vitroRT catalytic activity, RT heterodimerization, or RNase H activity. This study demonstrated that the interaction between surface-exposed acidic residues of the RT thumb domain and eEF1A is important for HIV-1 uncoating, reverse transcription, and replication.IMPORTANCEHIV-1, like all viruses, requires host cell proteins for its replication. Understanding the mechanisms behind virus-host interactions can lay the foundation for future novel therapeutic developments. Our lab has identified eEF1A as a key HIV-1 RT binding host protein that is important for the reverse transcription of HIV-1 genomic RNA into DNA. Here we identify the first surface-exposed RT residues that underpin interactions with eEF1A. Mutation of one strictly conserved RT residue (E300R) delayed reverse transcription and viral core uncoating and strongly inhibited HIV-1 replication in CD4+T cells. This study advances the structural and mechanistic detail of the key RT-eEF1A interaction in HIV-1 infection and indicates its importance in uncoating for the first time. This provides a further basis for the development of an RT-eEF1A interaction-inhibiting anti-HIV-1 drug and suggests that the surface-exposed acidic patch of the RT thumb domain may be an attractive drug target.

2015 ◽  
Vol 89 (23) ◽  
pp. 12058-12069 ◽  
Author(s):  
Shewit S. Tekeste ◽  
Thomas A. Wilkinson ◽  
Ethan M. Weiner ◽  
Xiaowen Xu ◽  
Jennifer T. Miller ◽  
...  

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively.In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle.IMPORTANCETo establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Jordan Jennings ◽  
Jiong Shi ◽  
Janani Varadarajan ◽  
Parker J. Jamieson ◽  
Christopher Aiken

ABSTRACT A defining activity of retroviruses is reverse transcription, the process by which the viral genomic RNA is converted into the double-stranded DNA required for virus replication. Reverse transcriptase (RT), the viral enzyme responsible for this process, was identified in 1970 by assaying permeabilized retrovirus particles for DNA synthesis in vitro. Such reactions are inefficient, with only a small fraction of viral genomes being converted to full-length double-stranded DNA molecules, possibly owing to disruption of the structure of the viral core. Here, we show that reverse transcription in purified HIV-1 cores is enhanced by the addition of the capsid-binding host cell metabolite inositol hexakisphosphate (IP6). IP6 potently enhanced full-length minus-strand synthesis, as did hexacarboxybenzene (HCB), which also stabilizes the HIV-1 capsid. Both IP6 and HCB stabilized the association of the viral CA and RT proteins with HIV-1 cores. In contrast to the wild type, cores isolated from mutant HIV-1 particles containing intrinsically hyperstable capsids exhibited relatively efficient reverse transcription in the absence of IP6, further indicating that the compound promotes reverse transcription by stabilizing the viral capsid. We also observed that the capsid-destabilizing antiviral compound PF74 inhibited endogenous reverse transcription with a potency that mirrors its ability to inhibit reverse transcription during infection. Our results show that the stabilization of the HIV-1 capsid permits efficient reverse transcription in HIV-1 cores, providing a sensitive experimental system for analyzing the functions of viral and host cell molecules and the role of capsid disassembly (uncoating) in the process. IMPORTANCE HIV-1 infection requires reverse transcription of the viral genome. While much is known about the biochemistry of reverse transcription from simplified biochemical reactions, reverse transcription during infection takes place within a viral core. However, endogenous reverse transcription reactions using permeabilized HIV-1 virions or purified viral cores have been inefficient. Using viral cores purified from infectious HIV-1 particles, we show that efficient reverse transcription is achieved in vitro by addition of the capsid-stabilizing metabolite inositol hexakisphosphate. The enhancement of reverse transcription was linked to the capsid-stabilizing effect of the compound, consistent with the known requirement for an intact or semi-intact viral capsid for HIV-1 infection. Our results establish a biologically relevant system for dissecting the function of the viral capsid and its disassembly during reverse transcription. The system should also prove useful for mechanistic studies of capsid-targeting antiviral drugs.


2000 ◽  
Vol 74 (19) ◽  
pp. 8938-8945 ◽  
Author(s):  
Markus Dettenhofer ◽  
Shan Cen ◽  
Bradley A. Carlson ◽  
Lawrence Kleiman ◽  
Xiao-Fang Yu

ABSTRACT The vif gene of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication, although the functional target of Vif remains elusive. HIV-1 vif mutant virions derived from nonpermissive H9 cells displayed no significant differences in the amount, ratio, or integrity of their protein composition relative to an isogenic wild-type virion. The amounts of the virion-associated viral genomic RNA and tRNA3 Lyswere additionally present at normal levels in vif mutant virions. We demonstrate that Vif associates with RNA in vitro as well as with viral genomic RNA in virus-infected cells. A functionally conserved lentivirus Vif motif was found in the double-stranded RNA binding domain of Xenopus laevis, Xlrbpa. The natural intravirion reverse transcriptase products were markedly reduced invif mutant virions. Moreover, purified vifmutant genomic RNA-primer tRNA complexes displayed severe defects in the initiation of reverse transcription with recombinant reverse transcriptase. These data point to a novel role for Vif in the regulation of efficient reverse transcription through modulation of the virion nucleic acid components.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Fadila Larguet ◽  
Clément Caté ◽  
Benoit Barbeau ◽  
Eric Rassart ◽  
Elsy Edouard

Abstract Background HIV-1 hijacks the cellular machinery for its own replication through protein-protein interactions between viral and host cell factors. One strategy against HIV-1 infection is thus to target these key protein complexes. As the integration of reverse transcribed viral cDNA into a host cell chromosome is an essential step in the HIV-1 life cycle, catalyzed by the viral integrase and other important host factors, we aimed at identifying new integrase binding partners through a novel approach. Methods A LTR-derived biotinylated DNA fragment complexed with the integrase on magnetic beads was incubated with extracts from integrase-expressing 293 T cells. Liquid chromatography-mass spectrometry/mass spectrometry and co-immunoprecipitation/pull-down experiments were used for the identification of binding partners. Transfections of histone deacetylase 1 (HDAC1) expression vectors and/or specific siRNA were conducted in HeLa-CD4 and 293 T cells followed by infection with fully infectious NL4–3 and luciferase-expressing pseudotyped viruses or by proviral DNA transfection. Fully infectious and pseudotyped viruses produced from HDAC1-silenced 293 T cells were tested for their infectivity toward HeLa-CD4 cells, T cell lines and primary CD4+ T cells. Late RT species and integrated viral DNA were quantified by qPCR and infectivity was measured by luciferase activity and p24 ELISA assay. Results were analyzed by the Student’s t-test. Results Using our integrase-LTR bait approach, we successfully identified new potential integrase-binding partners, including HDAC1. We further confirmed that HDAC1 interacted with the HIV-1 integrase in co-immunoprecipitation and pull-down experiments. HDAC1 knockdown in infected HeLa cells was shown to interfere with an early preintegration step of the HIV-1 replication cycle, which possibly involves reverse transcription. We also observed that, while HDAC1 overexpression inhibited HIV-1 expression after integration, HDAC1 knockdown had no effect on this step. In virus producer cells, HDAC1 knockdown had a limited impact on virus infectivity in either cell lines or primary CD4+ T cells. Conclusions Our results show that HDAC1 interacts with the HIV-1 integrase and affects virus replication before and after integration. Overall, HDAC1 appears to facilitate HIV-1 replication with a major effect on a preintegration step, which likely occurs at the reverse transcription step.


2020 ◽  
Author(s):  
Jordan Jennings ◽  
Jiong Shi ◽  
Janani Varadarajan ◽  
Parker J. Jamieson ◽  
Christopher Aiken

ABSTRACTA defining activity of retroviruses is reverse transcription, the process during which the viral genomic RNA is converted into the double strand DNA required for virus replication. Reverse transcriptase (RT), the viral enzyme responsible for this process, was identified in 1970 by assaying permeabilized retrovirus particles for DNA synthesis in vitro. Such reactions are inefficient with only a small fraction of viral genomes being converted to full-length double strand DNA molecules, possibly owing to disruption of the structure of the viral core. Here we show that reverse transcription in purified HIV-1 cores is enhanced by the addition of the capsid-binding host cell metabolite inositol hexakisphosphate (IP6). IP6 potently enhanced full-length minus strand synthesis, as did hexacarboxybenzene (HCB) which also stabilizes the HIV-1 capsid. Both IP6 and HCB stabilized the association of the viral CA and RT proteins with HIV-1 cores. In contrast to the wild type, cores isolated from mutant HIV-1 particles containing intrinsically hyperstable capsids exhibited efficient reverse transcription in the absence of IP6, further indicating that the compound promotes reverse transcription by stabilizing the viral capsid. Our results show that stabilization of the HIV-1 capsid permits efficient reverse transcription in HIV-1 cores, providing a sensitive experimental system for analyzing the functions of viral and host cell molecules and the role of capsid disassembly (uncoating) in the process.IMPORTANCEHIV-1 infection requires reverse transcription of the viral genome. While much is known about the biochemistry of reverse transcription from simplified biochemical reactions, reverse transcription during infection takes place within a viral core. However, endogenous reverse transcription reactions using permeabilized virions or purified viral cores have been inefficient. Using viral cores purified from infectious HIV-1 particles, we show that efficient reverse transcription is achieved in vitro by addition of the capsid-stabilizing metabolite inositol hexakisphosphate. Enhancement of reverse transcription was linked to the capsid-stabilizing effect of the compound, consistent with the known requirement for an intact or semi-intact viral capsid for HIV-1 infection. Our results establish a biologically relevant system for dissecting the function of the viral capsid and its disassembly during reverse transcription. The system may also prove useful for mechanistic studies of emerging capsid-targeting antiviral drugs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Betty Ha ◽  
Kevin P. Larsen ◽  
Jingji Zhang ◽  
Ziao Fu ◽  
Elizabeth Montabana ◽  
...  

AbstractReverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC–nevirapine, and RTIC–efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA–tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


2021 ◽  
Author(s):  
Sanela Rankovic ◽  
Akshay Deshpande ◽  
Shimon Harel ◽  
Christopher Aiken ◽  
Itay Rousso

AbstractThe HIV core consists of the viral genome and associated proteins encased by a cone-shaped protein shell termed the capsid. Successful infection requires reverse transcription of the viral genome and disassembly of the capsid shell within a cell in a process known as uncoating. The integrity of the viral capsid is critical for reverse transcription, yet the viral capsid must be breached to release the nascent viral DNA prior to integration. We employed atomic force microscopy to study the stiffness changes in HIV-1 cores during reverse transcription in vitro in reactions containing the capsid-stabilizing host metabolite IP6. Cores exhibited a series of stiffness spikes, with up to three spikes typically occurring between 10-30, 40-80, and 120-160 minutes after initiation of reverse transcription. Addition of the reverse transcriptase (RT) inhibitor efavirenz eliminated the appearance of these spikes and the subsequent disassembly of the capsid, thus establishing that both result from reverse transcription. Using timed addition of efavirenz, and analysis of an RNAseH-defective RT mutant, we established that the first stiffness spike requires minus-strand strong stop DNA synthesis, with subsequent spikes requiring later stages of reverse transcription. Additional rapid AFM imaging experiments revealed repeated morphological changes in cores that were temporally correlated with the observed stiffness spikes. Our study reveals discrete mechanical changes in the viral core that are likely related to specific stages of reverse transcription. Our results suggest that reverse-transcription-induced changes in the capsid progressively remodel the viral core to prime it for temporally accurate uncoating in target cells.


2005 ◽  
Vol 79 (4) ◽  
pp. 2199-2210 ◽  
Author(s):  
Yan Zhou ◽  
Haili Zhang ◽  
Janet D. Siliciano ◽  
Robert F. Siliciano

ABSTRACT In untreated human immunodeficiency virus type 1 (HIV-1) infection, most viral genomes in resting CD4+ T cells are not integrated into host chromosomes. This unintegrated virus provides an inducible latent reservoir because cellular activation permits integration, virus gene expression, and virus production. It remains controversial whether HIV-1 is stable in this preintegration state. Here, we monitored the fate of HIV-1 in resting CD4+ cells by using a green fluorescent protein (GFP) reporter virus carrying an X4 envelope. After virus entry into resting CD4+ T cells, both rescuable virus gene expression, visualized with GFP, and rescuable virion production, assessed by p24 release, decayed with a half-life of 2 days. In these cells, reverse transcription goes to completion over 2 to 3 days, and 50% of the viruses that have entered undergo functional decay before reverse transcription is complete. We distinguished two distinct but closely related factors contributing to loss of rescuable virus. First, some host cells undergo virus-induced apoptosis upon viral entry, thereby reducing the amount of rescuable virus. Second, decay processes directly affecting the virus both before and after the completion of reverse transcription contribute to the loss of rescuable virus. The functional half-life of full-length, integration-competent reverse transcripts is only 1 day. We propose that rapid intracellular decay processes compete with early steps in viral replication in infected CD4+ T cells. Decay processes dominate in resting CD4+ T cells as a result of the slow kinetics of reverse transcription and blocks at subsequent steps. Therefore, the reservoir of unintegrated HIV-1 in recently infected resting CD4+ T cells is highly labile.


Sign in / Sign up

Export Citation Format

Share Document