scholarly journals Wind Features Extracted from Weather Simulations for Wind-Wave Prediction Using High-Resolution Neural Networks

2021 ◽  
Vol 9 (11) ◽  
pp. 1257
Author(s):  
Chih-Chiang Wei

Nearshore wave forecasting is susceptible to changes in regional wind fields and environments. However, surface wind field changes are difficult to determine due to the lack of in situ observational data. Therefore, accurate wind and coastal wave forecasts during typhoon periods are necessary. The purpose of this study is to develop artificial intelligence (AI)-based techniques for forecasting wind–wave processes near coastal areas during typhoons. The proposed integrated models employ combined a numerical weather prediction (NWP) model and AI techniques, namely numerical (NUM)-AI-based wind–wave prediction models. This hybrid model comprising VGGNNet and High-Resolution Network (HRNet) was integrated with recurrent-based gated recurrent unit (GRU). Termed mVHR_GRU, this model was constructed using a convolutional layer for extracting features from spatial images with high-to-low resolution and a recurrent GRU model for time series prediction. To investigate the potential of mVHR_GRU for wind–wave prediction, VGGNet, HRNet, and Two-Step Wind-Wave Prediction (TSWP) were selected as benchmark models. The coastal waters in northeast Taiwan were the study area. The length of the forecast horizon was from 1 to 6 h. The mVHR_GRU model outperformed the HR_GRU, VGGNet, and TSWP models according to the error indicators. The coefficient of mVHR_GRU efficiency improved by 13% to 18% and by 13% to 15% at the Longdong and Guishandao buoys, respectively. In addition, in a comparison of the NUM–AI-based model and a numerical model simulating waves nearshore (SWAN), the SWAN model generated greater errors than the NUM–AI-based model. The results of the NUM–AI-based wind–wave prediction model were in favorable accordance with the observed results, indicating the feasibility of the established model in processing spatial data.

2010 ◽  
Vol 23 (23) ◽  
pp. 6277-6291 ◽  
Author(s):  
Frank O. Bryan ◽  
Robert Tomas ◽  
John M. Dennis ◽  
Dudley B. Chelton ◽  
Norman G. Loeb ◽  
...  

Abstract The emerging picture of frontal scale air–sea interaction derived from high-resolution satellite observations of surface winds and sea surface temperature (SST) provides a unique opportunity to test the fidelity of high-resolution coupled climate simulations. Initial analysis of the output of a suite of Community Climate System Model (CCSM) experiments indicates that characteristics of frontal scale ocean–atmosphere interaction, such as the positive correlation between SST and surface wind stress, are realistically captured only when the ocean component is eddy resolving. The strength of the coupling between SST and surface stress is weaker than observed, however, as has been found previously for numerical weather prediction models and other coupled climate models. The results are similar when the atmospheric component model grid resolution is doubled from 0.5° to 0.25°, an indication that shortcomings in the representation of subgrid scale atmospheric planetary boundary layer processes, rather than resolved scale processes, are responsible for the weakness of the coupling. In the coupled model solutions the response to mesoscale SST features is strongest in the atmospheric boundary layer, but there is a deeper reaching response of the atmospheric circulation apparent in free tropospheric clouds. This simulated response is shown to be consistent with satellite estimates of the relationship between mesoscale SST and all-sky albedo.


2020 ◽  
Author(s):  
Rianne Giesen ◽  
Ana Trindade ◽  
Marcos Portabella ◽  
Ad Stoffelen

<p>The ocean surface wind plays an essential role in the exchange of heat, gases and momentum at the atmosphere-ocean interface. It is therefore crucial to accurately represent this wind forcing in physical ocean model simulations. Scatterometers provide high-resolution ocean surface wind observations, but have limited spatial and temporal coverage. On the other hand, numerical weather prediction (NWP) model wind fields have better coverage in time and space, but do not resolve the small-scale variability in the air-sea fluxes. In addition, Belmonte Rivas and Stoffelen (2019) documented substantial systematic error in global NWP fields on both small and large scales, using scatterometer observations as a reference.</p><p>Trindade et al. (2019) combined the strong points of scatterometer observations and atmospheric model wind fields into ERA*, a new ocean wind forcing product. ERA* uses temporally-averaged differences between geolocated scatterometer wind data and European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis fields to correct for persistent local NWP wind vector biases. Verified against independent observations, ERA* reduced the variance of differences by 20% with respect to the uncorrected NWP fields. As ERA* has a high potential for improving ocean model forcing in the CMEMS Model Forecasting Centre (MFC) products, it is a candidate for a future CMEMS Level 4 (L4) wind product. We present the ongoing work to further improve the ERA* product and invite potential users to discuss their L4 product requirements.</p><p>References:</p><p>Belmonte Rivas, M. and A. Stoffelen (2019): <em>Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT</em>, Ocean Sci., 15, 831–852, doi: 10.5194/os-15-831-2019.</p><p>Trindade, A., M. Portabella, A. Stoffelen, W. Lin and A. Verhoef (2019), <em>ERAstar: A High-Resolution Ocean Forcing Product</em>, IEEE Trans. Geosci. Remote Sens., 1-11, doi: 10.1109/TGRS.2019.2946019.</p>


2018 ◽  
Vol 10 (10) ◽  
pp. 1520 ◽  
Author(s):  
Adrianos Retalis ◽  
Dimitris Katsanos ◽  
Filippos Tymvios ◽  
Silas Michaelides

Global Precipitation Measurement (GPM) high-resolution product is validated against rain gauges over the island of Cyprus for a three-year period, starting from April 2014. The precipitation estimates are available in both high temporal (half hourly) and spatial (10 km) resolution and combine data from all passive microwave instruments in the GPM constellation. The comparison performed is twofold: first the GPM data are compared with the precipitation measurements on a monthly basis and then the comparison focuses on extreme events, recorded throughout the first 3 years of GPM’s operation. The validation is based on ground data from a dense and reliable network of rain gauges, also available in high temporal (hourly) resolution. The first results show very good correlation regarding monthly values; however, the correspondence of GPM in extreme precipitation varies from “no correlation” to “high correlation”, depending on case. This study aims to verify the GPM rain estimates, since such a high-resolution dataset has numerous applications, including the assimilation in numerical weather prediction models and the study of flash floods with hydrological models.


1988 ◽  
Vol 128 ◽  
pp. 285-286
Author(s):  
R. D. Rosen ◽  
D. A. Salstein ◽  
T. Nehrkorn ◽  
J. O. Dickey ◽  
T. M. Eubanks ◽  
...  

A new approach to forecasting changes in length-of-day (δl.o.d) with lead times from one to ten days is examined. The approach is based on the high correlation that has been shown to exist between high frequency changes in l.o.d. and those in the atmosphere's angular momentum (M). Because forecasts of tropospheric values of M can be calculated from the zonal wind fields produced by operational numerical weather prediction models, it seems worth investigating whether these forecasts are sufficiently skillful to use to infer the evolution of δl.o.d. Here, we examine the quality of M forecasts made by the Medium Range Forecast (MRF) model of the U.S. National Meteorological Center (NMC). By comparing these forecasts against those based on a simple model of persistence, we find that skillful forecasts of M are being achieved on average by the MRF, although there has been much month-to-month variability in forecast quality. Overall, our results indicate that for prediction lead times of 1–10 days, dynamically-based forecasts of δl.o.d. represent a viable alternative to the empirical approaches currently in use.


2020 ◽  
Vol 12 (18) ◽  
pp. 2930 ◽  
Author(s):  
Anna del Moral ◽  
Tammy M. Weckwerth ◽  
Tomeu Rigo ◽  
Michael M. Bell ◽  
María Carmen Llasat

Convective activity in Catalonia (northeastern Spain) mainly occurs during summer and autumn, with severe weather occurring 33 days per year on average. In some cases, the storms have unexpected propagation characteristics, likely due to a combination of the complex topography and the thunderstorms’ propagation mechanisms. Partly due to the local nature of the events, numerical weather prediction models are not able to accurately nowcast the complex mesoscale mechanisms (i.e., local influence of topography). This directly impacts the retrieved position and motion of the storms, and consequently, the likely associated storm severity. Although a successful warning system based on lightning and radar observations has been developed, there remains a lack of knowledge of storm dynamics that could lead to forecast improvements. The present study explores the capabilities of the radar network at the Meteorological Service of Catalonia to retrieve dual-Doppler wind fields to study the dynamics of Catalan thunderstorms. A severe thunderstorm that splits and a tornado-producing supercell that is channeled through a valley are used to demonstrate the capabilities of an advanced open source technique that retrieves dynamical variables from C-band operational radars in complex terrain. For the first time in the Iberian Peninsula, complete 3D storm-relative winds are obtained, providing information about the internal dynamics of the storms. This aids in the analyses of the interaction between different storm cells within a system and/or the interaction of the cells with the local topography.


2009 ◽  
Vol 24 (5) ◽  
pp. 1374-1389 ◽  
Author(s):  
Daran L. Rife ◽  
Christopher A. Davis ◽  
Jason C. Knievel

Abstract The study describes a method of evaluating numerical weather prediction models by comparing the characteristics of temporal changes in simulated and observed 10-m (AGL) winds. The method is demonstrated on a 1-yr collection of 1-day simulations by the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) over southern New Mexico. Temporal objects, or wind events, are defined at the observation locations and at each grid point in the model domain as vector wind changes over 2 h. Changes above the uppermost quartile of the distributions in the observations and simulations are empirically classified as significant; their attributes are analyzed and interpreted. It is demonstrated that the model can discriminate between large and modest wind changes on a pointwise basis, suggesting that many forecast events have an observational counterpart. Spatial clusters of significant wind events are highly continuous in space and time. Such continuity suggests that displaying maps of surface wind changes with high temporal resolution can alert forecasters to the occurrence of important phenomena. Documented systematic errors in the amplitude, direction, and timing of wind events will allow forecasters to mentally adjust for biases in features forecast by the model.


2018 ◽  
Vol 27 (4) ◽  
pp. 257 ◽  
Author(s):  
O. Rios ◽  
W. Jahn ◽  
E. Pastor ◽  
M. M. Valero ◽  
E. Planas

Local wind fields that account for topographic interaction are a key element for any wildfire spread simulator. Currently available tools to generate near-surface winds with acceptable accuracy do not meet the tight time constraints required for data-driven applications. This article presents the specific problem of data-driven wildfire spread simulation (with a strategy based on using observed data to improve results), for which wind diagnostic models must be run iteratively during an optimisation loop. An interpolation framework is proposed as a feasible alternative to keep a positive lead time while minimising the loss of accuracy. The proposed methodology was compared with the WindNinja solver in eight different topographic scenarios with multiple resolutions and reference – pre-run– wind map sets. Results showed a major reduction in computation time (~100 times once the reference fields are available) with average deviations of 3% in wind speed and 3° in direction. This indicates that high-resolution wind fields can be interpolated from a finite set of base maps previously computed. Finally, wildfire spread simulations using original and interpolated maps were compared showing minimal deviations in the fire shape evolution. This methodology may have an important effect on data assimilation frameworks and probabilistic risk assessment where high-resolution wind fields must be computed for multiple weather scenarios.


2011 ◽  
Vol 11 (22) ◽  
pp. 11793-11805 ◽  
Author(s):  
M. Katurji ◽  
S. Zhong ◽  
P. Zawar-Reza

Abstract. Over complex terrain, an important question is how various topographic features may generate or alter wind turbulence and how far the influence can be extended downstream. Current measurement technology limits the capability in providing a long-range snapshot of turbulence as atmospheric eddies travel over terrain, interact with each other, change their productive and dissipative properties, and are then observed tens of kilometers downstream of their source. In this study, we investigate through high-resolution numerical simulations the atmospheric transport of terrain-generated turbulence in an atmosphere that is neutrally stratified. The simulations are two-dimensional with an isotropic spatial resolution of 15 m and run to a quasi-steady state. They are designed in such a way to allow an examination of the effects of a bell-shaped experimental hill with varying height and aspect ratio on turbulence properties generated by another hill 20 km upstream. Averaged fields of the turbulent kinetic energy (TKE) imply that terrain could have a large influence on velocity perturbations at least 30H (H is the terrain height) upstream and downstream of the terrain, with the largest effect happening in the area of the largest pressure perturbations. The results also show that downstream of the terrain the TKE fields are sensitive to the terrain's aspect ratio with larger enhancement in turbulence by higher aspect ratio, while upstream there is a suppression of turbulence that does not appear to be sensitive to the terrain aspect ratio. Instantaneous vorticity fields shows very detailed flow structures that resemble a multitude of eddy scales dynamically interacting while shearing oppositely paired vortices. The knowledge of the turbulence production and modifications by topography from these high-resolution simulations can be helpful in understanding long-range terrain-induced turbulence and improving turbulence parameterizations used in lower resolution weather prediction models.


2015 ◽  
Vol 8 (8) ◽  
pp. 2645-2653 ◽  
Author(s):  
C. G. Nunalee ◽  
Á. Horváth ◽  
S. Basu

Abstract. Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP) modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL), is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF) model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30), the Shuttle Radar Topography Mission (SRTM), and the Global Multi-resolution Terrain Elevation Data set (GMTED2010) terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.


Sign in / Sign up

Export Citation Format

Share Document