pulse buckling
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3594
Author(s):  
Andrea Sellitto ◽  
Francesco Di Caprio ◽  
Michele Guida ◽  
Salvatore Saputo ◽  
Aniello Riccio

This work is focused on the investigation of the structural behavior of a composite floor beam, located in the cargo zone of a civil aircraft, subjected to cyclical low-frequency compressive loads with different amplitudes. In the first stage, the numerical models able to correctly simulate the investigated phenomenon have been defined. Different analyses have been performed, aimed to an exhaustive evaluation of the structural behavior of the test article. In particular, implicit and explicit analyses have been considered to preliminary assess the capabilities of the numerical model. Then, explicit non-linear analyses under time-dependent loads have been considered, to predict the behavior of the composite structure under cyclic loading conditions. According to the present investigation, low-frequency cyclic loads with peak values lower than the static buckling load value are not capable of triggering significant instability.


Author(s):  
Seyed Ali Ahmadi ◽  
Mohammad Hadi Pashaei ◽  
Ramazan-Ali Jafari-Talookolaei

The current study aims to investigate the facesheet dynamic pulse buckling of simply supported, cylindrical composite sandwich panels using the Budiansky–Roth buckling criterion. The foam core has been modeled with isotropic elastic-perfectly plastic properties and various failure modes of the sandwich panel like facesheet fracture, foam shear fracture, and foam yield are investigated. The extended high-order sandwich panel core theory was used to model the compressibility of the core. To study the mechanical properties of the viscoelastic foam core, the Kelvin–Voigt linear viscoelastic model was applied. The transient responses and stress components obtained from the present method are compared with finite element solutions using commercial software ANSYS and those reported in the literature. Accordingly, reasonable agreement is observed. It was shown that the pulse local buckling strength of the panel increases with a decrease in the panel radius or an increase in the thickness of the panel, and facesheet fracture is considered more a likely failure mode of these sandwich panels.


2010 ◽  
Vol 92 (7) ◽  
pp. 1716-1727 ◽  
Author(s):  
Michelle S. Hoo Fatt ◽  
Sunil G. Pothula

Sign in / Sign up

Export Citation Format

Share Document