electromagnetically levitated
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 33 (6) ◽  
Author(s):  
Andrew M. Mullis

AbstractAl-Ni alloys (for Ni < 45 at.%) show a unique property in that, over at least part of the accessible undercooling range, the recalescence velocity measured in electromagnetically levitated samples is observed to decrease as the undercooling increases. This result has been subject to careful validation, including microgravity experiments utilising the TEMPUS levitation facility on-board the International Space Station (ISS). In these experiments, anomalous growth is observed to coincide with a recalescence morphology comprising multiple circular growth fronts [Herlach et al. Phys. Rev. Mat. 3, 073,402 (2019)], termed “scales”. In this paper we present an analysis of high speed video data from the ISS experiments in which we show that such scale-like growth is consistent with a recalescence front that is initially confined to a thin layer on the surface of the sample. This then nucleates a slower, radial inward growth, which is consistent with microstructures observed in Al-Ni droplets. We show that such surface recalescence would be favoured for samples which were surface enriched in Ni, wherein the recalescence velocity (at fixed nucleation temperature) increases rapidly with Ni-concentration. Moreover, it is shown that the anomalous velocity behaviour can be matched in all compositions studied if the surface enhancement in Ni is a linear function of the nucleation temperature with a gradient of 0.03 at.% K−1. Analysis of historical results from the literature indicates that such surface Ni-enhancement may have been present, but overlooked, in other experiments on Al-rich Al-Ni droplets.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1460
Author(s):  
Qi Jiang ◽  
Guifang Zhang ◽  
Yindong Yang ◽  
Alexander McLean ◽  
Lei Gao

A kinetic model was developed to study the dephosphorization of 600 MPa steel droplets under electromagnetic levitation conditions. The relationships which were derived from the model between dephosphorization and the influence of temperature and gas flow rate were in good agreement with experimental data. Both temperature and gas flow rate were conducive to the evaporation of phosphorus, with the effect of temperature having a greater influence than that of the gas velocity. The results show that the rate-controlling step for the dephosphorization process was diffusion within the gas phase. This work aims to provide a theoretical basis for process optimization during the dephosphorization of 600 MPa steel.


2020 ◽  
Vol 49 (1-2) ◽  
pp. 89-105 ◽  
Author(s):  
J. BRILLO ◽  
J. WESSING ◽  
H. KOBATAKE ◽  
H. FUKUYAMA

Surface tensions of electromagnetically levitated liquid Ti-samples were measured under the influence of oxygen. For this purpose, Ti-O samples were prepared by adding different amounts of TiO2 powder to pure Ti. The surface tension was found to strongly depend on the bulk oxygen mole fraction determined by chemical analysis. The results could be described by a simple model presented in the present work. In this model the Butler equation is applied and the formation of TiO2 – associates are taken into account. Non-ideal interactions ΔH≠0 between titanium and the associates also need to be taken into account. Good agreement with the experimental data is evident and also with a different model developed earlier by us.


Sign in / Sign up

Export Citation Format

Share Document