eyewall replacement cycles
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Lorenzo Pulmano ◽  
Leya Joykutty

Eyewall replacement cycles (ERCs) are events that occur in intense tropical cyclones (TCs) and are difficult to predict.  An ERC event involves a secondary outer eyewall that surrounds the inner eyewall.  The outer eyewall slowly moves towards the eye and weakens the inner eyewall, eventually replacing the inner eyewall.  During this process, wind speeds lower and the structure of a TC becomes disorganized, further weakening the storm.  TCs often restrengthen after an ERC.  Little is known about the process and as such, poses an obstacle to forecasters.  The Automated Rotational Center Hurricane Eye Retrieval (ARCHER) Microwave-based Probability of Eyewall Replacement Cycle (MPERC) is an algorithm that uses 89-95 GHz passive microwave imagery and intensity estimates from the National Hurricane Center (NHC), Central Pacific Hurricane Center (CPHC), or the Joint Typhoon Warning Center (JTWC) to predict the possibility of an ERC.  The effectiveness and ability of ARCHER MPERC was analyzed and compared to the NHC’s official reports on all Atlantic Basin tropical cyclones from 2017 to 2019.   MPERC ultimately predicted seventeen ERCs in nine tropical cyclones.  Of those, seven were valid ERCs.  The algorithm works well, predicting approximately 41% of the total number of predictions correctly.  However, MPERC did not predict five ERCs that were cited by the NHC.  It was further found that it was true that MPERC produces incorrect results in sheared and dry environments.


2021 ◽  
Vol 78 (5) ◽  
pp. 1411-1428
Author(s):  
Tsz-Kin Lai ◽  
Eric A. Hendricks ◽  
M. K. Yau ◽  
Konstantinos Menelaou

AbstractIntense tropical cyclones (TCs) often experience secondary eyewall formations and the ensuing eyewall replacement cycles. Better understanding of the underlying dynamics is crucial to make improvements to the TC intensity and structure forecasting. Radar imagery of some double-eyewall TCs and a real-case simulation study indicated that the barotropic instability (BI) across the moat (aka type-2 BI) may play a role in inner eyewall decay. A three-dimensional numerical study accompanying this paper pointed out that type-2 BI is able to withdraw the inner eyewall absolute angular momentum (AAM) and increase the outer eyewall AAM through the eddy radial transport of eddy AAM. This paper explores the reason why the eddy radial transport of eddy AAM is intrinsically nonzero. Linear and nonlinear shallow water experiments are performed and they produce expected evolutions under type-2 BI. It will be shown that only nonlinear experiments have changes in AAM over the inner and outer eyewalls, and the changes solely originate from the eddy radial transport of eddy AAM. This result highlights the importance of nonlinearity of type-2 BI. Based on the distribution of vorticity perturbations and the balanced-waves arguments, it will be demonstrated that the nonzero eddy radial transport of eddy AAM is an essential outcome from the intrinsic interaction between the mutually growing vortex Rossby waves across the moat under type-2 BI. The analyses of the most unstable mode support the findings and will further attribute the inner eyewall decay and outer eyewall intensification to the divergence and convergence of the eddy angular momentum flux, respectively.


Author(s):  
I.-I. Lin ◽  
Robert F. Rogers ◽  
Hsiao-Ching Huang ◽  
Yi-Chun Liao ◽  
Derrick Herndon ◽  
...  

AbstractDevastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive RI (rapid intensification). In 24 h, Hagibis intensified by 100 kt, making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these 2 high-impact STYs.We found that the extremely high pre-storm sea surface temperature reaching 30.5°C, deep/warm pre-storm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ~8 ms−1, small during-storm ocean cooling effect of ~ 0.5C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air-sea flux for Hagibis’s RI than for Haiyan’s.After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.


Author(s):  
Tsz-Kin Lai ◽  
Eric A. Hendricks ◽  
Konstantinos Menelaou ◽  
M. K. Yau

AbstractRadar imagery of some double-eyewall tropical cyclones shows that the inner eyewalls became elliptical prior to their dissipation during the eyewall replacement cycles, indicating that the barotropic instability (BI) across the moat (a.k.a. type-2 BI) may play a role. To further examine the physics of inner eyewall decay and outer eyewall intensification under the influence of the type-2 instability, three-dimensional numerical experiments are performed. In the moist full-physics run, the simulated vortex exhibits the type-2 instability and the associated azimuthal wavenumber-2 radial flow pattern. The absolute angular momentum (AAM) budget calculation indicates, after the excitation of the type-2 instability, a significant intensification in the negative radial advection of AAM at the inner eyewall. It is further shown that the changes in radial AAM advection largely result from the eddy processes associated with the type-2 instability, and contribute significantly to the inner eyewall decay. The budget calculation also suggests that the type-2 instability can accelerate the inner eyewall decay in concert with the boundary layer cut-off effect. Another dry no-physics idealised experiment is conducted and the result shows that the type-2 instability alone is able to weaken the inner eyewall and also strengthen the outer eyewall with non-negligible effect.


2019 ◽  
Vol 147 (6) ◽  
pp. 2009-2022
Author(s):  
John Molinari ◽  
Jun A. Zhang ◽  
Robert F. Rogers ◽  
David Vollaro

Abstract Hurricane Frances (2004) represented an unusual event that produced three consecutive overlapping eyewall replacement cycles (ERCs). Their evolution followed some aspects of the typical ERC. The strong primary eyewalls contracted and outward-sloping secondary eyewalls formed near 3 times the radius of maximum winds. Over time these secondary eyewalls shifted inward, became more upright, and replaced the primary eyewalls. In other aspects, however, the ERCs in Hurricane Frances differed from previously described composites. The outer eyewall wind maxima became stronger than the inner in only 12 h, versus 25 h for average ERCs. More than 15 m s−1 outflow peaked in the upper troposphere during each ERC. Relative vorticity maxima peaked at the surface but extended to mid- and upper levels. Mean 200-hPa zonal velocity was often from the east, whereas ERC environments typically have zonal flow from the west. These easterlies were produced by an intense upper anticyclone slightly displaced from the center and present throughout the period of multiple ERCs. Inertial stability was low at almost all azimuths at 175 hPa near the 500-km radius during the period of interest. It is hypothesized that the reduced resistance to outflow associated with low inertial stability aloft induced deep upward motion and rapid intensification of the secondary eyewalls. The annular hurricane index of Knaff et al. showed that Hurricane Frances met all the criteria for annular hurricanes, which make up only 4% of all storms. It is argued that the annular hurricane directly resulted from the repeated ERCs following Wang’s reasoning.


2018 ◽  
Vol 146 (10) ◽  
pp. 3383-3399 ◽  
Author(s):  
Erin M. Dougherty ◽  
John Molinari ◽  
Robert F. Rogers ◽  
Jun A. Zhang ◽  
James P. Kossin

Abstract Hurricane Bonnie (1998) was an unusually resilient hurricane that maintained a steady-state intensity while experiencing strong (12–16 m s−1) vertical wind shear and an eyewall replacement cycle. This remarkable behavior was examined using observations from flight-level data, microwave imagery, radar, and dropsondes over the 2-day period encompassing these events. Similar to other observed eyewall replacement cycles, Bonnie exhibited the development, strengthening, and dominance of a secondary eyewall while a primary eyewall decayed. However, Bonnie’s structure was highly asymmetric because of the large vertical wind shear, in contrast to the more symmetric structures observed in other hurricanes undergoing eyewall replacement cycles. It is hypothesized that the unusual nature of Bonnie’s evolution arose as a result of an increase in vertical wind shear from 2 to 12 m s−1 even as the storm intensified to a major hurricane in the presence of high ambient sea surface temperatures. These circumstances allowed for the development of outer rainbands with intense convection downshear, where the formation of the outer eyewall commenced. In addition, the circulation broadened considerably during this time. The secondary eyewall developed within a well-defined beta skirt in the radial velocity profile, consistent with an earlier theory. Despite the large ambient vertical wind shear, the outer eyewall steadily extended upshear, supported by 35% larger surface wind speed upshear than downshear. The larger radius of maximum winds during and after the eyewall replacement cycle might have aided Bonnie’s resiliency directly, but also increased the likelihood that diabatic heating would fall inside the radius of maximum winds.


2017 ◽  
Vol 145 (3) ◽  
pp. 729-749 ◽  
Author(s):  
Anthony C. Didlake ◽  
Gerald M. Heymsfield ◽  
Paul D. Reasor ◽  
Stephen R. Guimond

Two eyewall replacement cycles were observed in Hurricane Gonzalo by the NOAA P3 Tail (TA) radar and the recently developed NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. These observations captured detailed precipitation and kinematic features of Gonzalo’s concentric eyewalls both before and after the outer eyewall’s winds became the vortex maximum winds. The data were analyzed relative to the deep-layer environmental wind shear vector. During the beginning eyewall replacement cycle stages, the inner and outer eyewalls exhibited different asymmetries. The inner eyewall asymmetry exhibited significant low-level inflow, updrafts, and positive tangential acceleration in the downshear quadrants, consistent with observational and theoretical studies. The outer eyewall asymmetry exhibited these features in the left-of-shear quadrants, further downwind from those of the inner eyewall. It is suggested that the low-level inflow occurring at the outer but not at the inner eyewall in the downwind regions signals a barrier effect that contributes to the eventual decay of the inner eyewall. Toward the later eyewall replacement stages, the outer eyewall asymmetry shifts upwind, becoming more aligned with the asymmetry of the earlier inner eyewall. This upwind shift is consistent with the structural evolution of eyewall replacement as the outer eyewall transitions into the primary eyewall of the storm.


2016 ◽  
Vol 31 (2) ◽  
pp. 601-608 ◽  
Author(s):  
James P. Kossin ◽  
Mark DeMaria

Abstract Eyewall replacement cycles (ERCs) are fairly common events in tropical cyclones (TCs) of hurricane intensity or greater and typically cause large and sometimes rapid changes in the intensity evolution of the TC. Although the details of the intensity evolution associated with ERCs appear to have some dependence on the ambient environmental conditions that the TCs move through, these dependencies can also be quite different than those of TCs that are not undergoing an ERC. For example, the Statistical Hurricane Prediction Scheme (SHIPS), which is used in National Hurricane Center operations and provides intensity forecast skill that is, on average, equal to or greater than deterministic numerical model skill, typically identifies an environment that is not indicative of weakening during the onset and subsequent evolution of an ERC. Contrarily, a period of substantial weakening does typically begin near the onset of an ERC, and this disparity can cause large SHIPS intensity forecast errors. Here, a simple model based on a climatology of ERC intensity change is introduced and tested against SHIPS. It is found that the application of the model can reduce intensity forecast error substantially when applied at, or shortly after, the onset of ERC weakening.


Sign in / Sign up

Export Citation Format

Share Document