eyewall replacement cycle
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Lorenzo Pulmano ◽  
Leya Joykutty

Eyewall replacement cycles (ERCs) are events that occur in intense tropical cyclones (TCs) and are difficult to predict.  An ERC event involves a secondary outer eyewall that surrounds the inner eyewall.  The outer eyewall slowly moves towards the eye and weakens the inner eyewall, eventually replacing the inner eyewall.  During this process, wind speeds lower and the structure of a TC becomes disorganized, further weakening the storm.  TCs often restrengthen after an ERC.  Little is known about the process and as such, poses an obstacle to forecasters.  The Automated Rotational Center Hurricane Eye Retrieval (ARCHER) Microwave-based Probability of Eyewall Replacement Cycle (MPERC) is an algorithm that uses 89-95 GHz passive microwave imagery and intensity estimates from the National Hurricane Center (NHC), Central Pacific Hurricane Center (CPHC), or the Joint Typhoon Warning Center (JTWC) to predict the possibility of an ERC.  The effectiveness and ability of ARCHER MPERC was analyzed and compared to the NHC’s official reports on all Atlantic Basin tropical cyclones from 2017 to 2019.   MPERC ultimately predicted seventeen ERCs in nine tropical cyclones.  Of those, seven were valid ERCs.  The algorithm works well, predicting approximately 41% of the total number of predictions correctly.  However, MPERC did not predict five ERCs that were cited by the NHC.  It was further found that it was true that MPERC produces incorrect results in sheared and dry environments.


Author(s):  
Ting-Yu Cha ◽  
Michael M. Bell ◽  
Alexander J. DesRosiers

AbstractHurricane Matthew (2016) was observed by ground-based polarimetric radars in Miami (KAMX), Melbourne (KMLB), and Jacksonville (KJAX) and a NOAA P3 airborne tail Doppler radar near the coast of the southeastern United States during an eyewall replacement cycle (ERC). The radar observations indicate that Matthew’s primary eyewall was replaced with a weaker outer eyewall, but unlike a classic ERC, Matthew did not reintensify after the inner eyewall disappeared. Triple Doppler analysis was calculated from the NOAA P3 airborne fore and aft radar scanning combined with the KAMX radar data during the period of secondary eyewall intensification and inner eyewall weakening from 19 UTC 6 October to 00 UTC 7 October. Four flight passes of the P3 aircraft show the evolution of the reflectivity, tangential winds, and secondary circulation as the outer eyewall became well-established. Further evolution of the ERC is analyzed from the ground-based single Doppler radar observations for 35 hours with high temporal resolution at a 5-minute interval from 19 UTC 6 October to 00 UTC 8 October using the Generalized Velocity Track Display (GVTD) technique. The single-Doppler analyses indicate that the inner eyewall decayed a few hours after the P3 flight, while the outer eyewall contracted but did not reintensify and the asymmetries increased episodically. The analysis suggests that the ERC process was influenced by a complex combination of environmental vertical wind shear, an evolving axisymmetric secondary circulation, and an asymmetric vortex Rossby wave damping mechanism that promoted vortex resiliency despite increasing shear.


Author(s):  
Muhammad Naufal Razin ◽  
Michael M. Bell

AbstractHurricane Ophelia (2005) underwent an unconventional eyewall replacement cycle (ERC) as it was a Category 1 storm located over cold sea surface temperatures near 23°C. The ERC was analyzed using airborne radar, flight-level, and dropsonde data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) intensive observation period on 11 September 2005. Results showed that the spin-up of the secondary tangential wind maximum during the ERC can be attributed to the efficient convergence of absolute angular momentum by the mid-level inflow of Ophelia’s dominantly stratiform rainbands. This secondary tangential wind maximum strongly contributed to the azimuthal mean tangential wind field, which is conducive for increased low-level supergradient winds and corresponding outflow. The low-level supergradient forcing enhanced convergence to form a secondary eyewall. Ophelia provides a unique example of an ERC occurring in a weaker storm with predominantly stratiform rainbands, suggesting an important role of stratiform precipitation processes in the development of secondary eyewalls.


2019 ◽  
Vol 76 (8) ◽  
pp. 2559-2573
Author(s):  
Hui Wang ◽  
Yuqing Wang ◽  
Jing Xu ◽  
Yihong Duan

Abstract This study examines the evolution of the warm-core structure during the secondary eyewall formation (SEF) and the subsequent eyewall replacement cycle (ERC) in a numerically simulated tropical cyclone (TC) under idealized conditions. Results show that prior to the SEF, the TC exhibited a double warm-core structure centered in the middle and upper troposphere in the eye region, and as the storm intensified with a rapid outward expansion of tangential winds, the warm core strengthened and a secondary off-center warm ring developed between 8- and 16-km heights near the outer edge of the eye. During the SEF, both the upper-level warm core and the secondary off-center warm ring rapidly strengthened. As the secondary eyewall intensified and contracted and the primary eyewall weakened and dissipated, the off-center warm ring extended inward and merged with the inner warm core to form a warm core typical of a single-eyewall TC. Results from the azimuthal-mean potential temperature budget indicate that the warming in the eye is due to subsidence and the warming above 14-km height outside the eye is largely contributed by radial warm advection in the outflow. The development of the off-center warm ring is largely due to the subsidence warming near the inner edge of the primary eyewall and in the moat area and the warming by diabatic heating in the upper part of the inner eyewall below 14-km height. Further analysis indicates that the eddy advection also played some role in the warming above 12-km height in the upper troposphere.


2018 ◽  
Vol 146 (10) ◽  
pp. 3383-3399 ◽  
Author(s):  
Erin M. Dougherty ◽  
John Molinari ◽  
Robert F. Rogers ◽  
Jun A. Zhang ◽  
James P. Kossin

Abstract Hurricane Bonnie (1998) was an unusually resilient hurricane that maintained a steady-state intensity while experiencing strong (12–16 m s−1) vertical wind shear and an eyewall replacement cycle. This remarkable behavior was examined using observations from flight-level data, microwave imagery, radar, and dropsondes over the 2-day period encompassing these events. Similar to other observed eyewall replacement cycles, Bonnie exhibited the development, strengthening, and dominance of a secondary eyewall while a primary eyewall decayed. However, Bonnie’s structure was highly asymmetric because of the large vertical wind shear, in contrast to the more symmetric structures observed in other hurricanes undergoing eyewall replacement cycles. It is hypothesized that the unusual nature of Bonnie’s evolution arose as a result of an increase in vertical wind shear from 2 to 12 m s−1 even as the storm intensified to a major hurricane in the presence of high ambient sea surface temperatures. These circumstances allowed for the development of outer rainbands with intense convection downshear, where the formation of the outer eyewall commenced. In addition, the circulation broadened considerably during this time. The secondary eyewall developed within a well-defined beta skirt in the radial velocity profile, consistent with an earlier theory. Despite the large ambient vertical wind shear, the outer eyewall steadily extended upshear, supported by 35% larger surface wind speed upshear than downshear. The larger radius of maximum winds during and after the eyewall replacement cycle might have aided Bonnie’s resiliency directly, but also increased the likelihood that diabatic heating would fall inside the radius of maximum winds.


2018 ◽  
Vol 75 (9) ◽  
pp. 3071-3093 ◽  
Author(s):  
Stephen R. Guimond ◽  
Jun A. Zhang ◽  
Joseph W. Sapp ◽  
Stephen J. Frasier

Abstract The structure of coherent turbulence in an eyewall replacement cycle in Hurricane Rita (2005) is presented from novel airborne Doppler radar observations using the Imaging Wind and Rain Airborne Profiler (IWRAP). The IWRAP measurements and three-dimensional (3D) wind vector calculations at a grid spacing of 250 m in the horizontal and 30 m in the vertical reveal the ubiquitous presence of organized turbulent eddies in the lower levels of the storm. The data presented here, and the larger collection of IWRAP measurements, currently are the highest-resolution Doppler radar 3D wind vectors ever obtained in a hurricane over the open ocean. Coincident data from NOAA airborne radars, the Stepped Frequency Microwave Radiometer, and flight-level data help to place the IWRAP observations into context and provide independent validation. The typical characteristics of the turbulent eddies are the following: radial wavelengths of ~1–3 km (mean value is ~2 km), depths from the ocean surface up to flight level (~1.5 km), aspect ratio of ~1.3, and horizontal wind speed perturbations of 10–20 m s−1. The most intense eddy activity is located on the inner edge of the outer eyewall during the concentric eyewall stage with a shift to the inner eyewall during the merging stage. The evolving structure of the vertical wind shear is connected to this shift and together these characteristics have several similarities to boundary layer roll vortices. However, eddy momentum flux analysis reveals that high-momentum air is being transported upward, in contrast with roll vortices, with large positive values (~150 m2 s−2) found in the turbulent filaments. In the decaying inner eyewall, elevated tangential momentum is also being transported radially outward to the intensifying outer eyewall. These results indicate that the eddies may have connections to potential vorticity waves with possible modifications due to boundary layer shear instabilities.


2017 ◽  
Vol 74 (8) ◽  
pp. 2489-2502 ◽  
Author(s):  
Morgan E O’Neill ◽  
Diamilet Perez-Betancourt ◽  
Allison A. Wing

Abstract A recent observational analysis has reported significant repeating diurnal signals propagating outward at cloud-top height from tropical cyclone centers. Modeling studies suggest that the visible upper-level impacts reflect a diurnal cycle through the depth of the troposphere. In this study, the possibility of wavelike diurnal responses in tropical cyclones is characterized using 3D cloud-resolving numerical simulations with and without a diurnal cycle. Diurnal waves can only begin to propagate well beyond the storm core, and the outflow region is most receptive to near-core diurnal propagation because of its anticyclonic flow. The tropical cyclone structure appears particularly hostile to diurnal wave propagation during periods when the eyewall experiences a temporary breakdown similar to an eyewall replacement cycle.


Sign in / Sign up

Export Citation Format

Share Document