broken gap
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 5)

ACS Nano ◽  
2021 ◽  
Author(s):  
Chaoyang Tan ◽  
Shiqi Yin ◽  
Jiawang Chen ◽  
Yuan Lu ◽  
Wensen Wei ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (6) ◽  
pp. 7416-7422
Author(s):  
Raphael Schuler ◽  
Federico Bianchini ◽  
Truls Norby ◽  
Helmer Fjellvåg
Keyword(s):  

2021 ◽  
Vol 47 (1) ◽  
pp. 19-23
Author(s):  
K. D. Moiseev ◽  
K. Yu. Golenitskii ◽  
N. S. Averkiev

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jinbo Pan ◽  
Jiabin Yu ◽  
Yan-Fang Zhang ◽  
Shixuan Du ◽  
Anderson Janotti ◽  
...  

Abstract Recent years have witnessed tremendous success in the discovery of topological states of matter. Particularly, sophisticated theoretical methods in time-reversal-invariant topological phases have been developed, leading to the comprehensive search of crystal database and the prediction of thousands of topological materials. In contrast, the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound. To overcome this challenge, we propose an alternative approach to realize the quantum anomalous Hall (QAH) effect, a typical example of magnetic topological phase, via engineering two-dimensional (2D) magnetic van der Waals heterojunctions. Instead of a single magnetic topological material, we search for the combinations of two 2D (typically trivial) magnetic insulator compounds with specific band alignment so that they can together form a type-III broken-gap heterojunction with topologically non-trivial band structure. By combining the data-driven materials search, first-principles calculations, and the symmetry-based analytical models, we identify eight type-III broken-gap heterojunctions consisting of 2D ferromagnetic insulators in the MXY compound family as a set of candidates for the QAH effect. In particular, we directly calculate the topological invariant (Chern number) and chiral edge states in the MnNF/MnNCl heterojunction with ferromagnetic stacking. This work illustrates how data-driven material science can be combined with symmetry-based physical principles to guide the search for heterojunction-based quantum materials hosting the QAH effect and other exotic quantum states in general.


Nano Letters ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 2370-2377 ◽  
Author(s):  
Juchan Lee ◽  
Ngoc Thanh Duong ◽  
Seungho Bang ◽  
Chulho Park ◽  
Duc Anh Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document