metallic panels
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 12)

H-INDEX

6
(FIVE YEARS 2)

2022 ◽  
pp. 121-152
Author(s):  
Aytekin Ulutaş

In order to take more stringent measures in fuel economy and achieve the determined performance targets, the automotive industry needs to reduce the weight of the vehicles it produces. For this reason, all automobile manufacturers have determined their own strategies. Some manufacturers use lighter aluminum, magnesium, and composite components in their cars. In this study, the joining techniques of lightweight materials such as welding and the processes of their industrial use have been examined. There is currently no single technology that can combine all metallic panels in a car body structure. However, it is known that various joining technologies are used together. With the potential to combine certain combinations of steel and aluminum, manufacturers and scientists continue to work to identify technologies with the highest potential for lightweight joining and put them into use in high-volume automobile production. Therefore, it is important to examine the weldability of light materials such as magnesium, titanium, and aluminum.


2021 ◽  
pp. 147592172110089
Author(s):  
Yang Li ◽  
Feiyun Xu

The metallic panel acoustic emission signal with strong non-stationary properties is normally composed of multiple components (e.g. impulses, background noise, and other external signal), where impulses relevant to metallic panel are easily contaminated by background noise and other external signal, making it difficult to excavate the inherent acoustic emission signal features. To address this issue and achieve the damage monitoring of metallic panels based on acoustic emission technology, a new scheme based on adaptive improvement variational mode decomposition–wavelet packet transform is developed for extracting acoustic emission signal features of metallic panels. Specifically, three different dimensions of Q235B steel plates are utilized to collect acoustic emission signal during three-point bending experiments, to evaluate the effectiveness of the proposed approach and to investigate the influence of size effect on the acoustic emission signal characteristics. In addition, the transient process and centroid frequency distribution of each damage stage are investigated, and the internal structure variations in the bending damage process are detected by scanning electron microscopy inspection. Moreover, the generalization of the proposed damage monitoring method is evaluated for plate-like structures that have complex geometric features, such as welds. The results demonstrate the effectiveness of the proposed method for acoustic emission–based structural health monitoring of metallic plate-like structures.


2020 ◽  
Vol 10 (6) ◽  
pp. 2121
Author(s):  
Ageel Alogla ◽  
Mahmoud Helal ◽  
Mohamed Mokbel ElShafey ◽  
Elsayed Fathallah

The need for building protection against blast loads is a crucial issue nowadays due to the escalating threat of terrorist attacks, which affect people’s lives and critical structures. Consequently, design of protective panels to segregate building façades from the effect of a nearby explosion is required. Such design mainly depends on the ability of protective panels to mitigate and diffract the blast wave before reaching building façades. Five protective panel models with different designs, referred to as the Combined Protection System (CPS), are introduced in this paper. The main objective of this research was to achieve a design that could sustain a blast load with minimum plastic deformations. The introduced CPS designs included two steel plates linked by connector plates. The CPS dimensions were 3 m × 3 m × 0.35 m, representing length, width, and height, respectively. After that, the successful panel design was supported by placing these panels onto a masonry wall in different configurations. The protective panels were tested against 50 kg of trinitrotoluene (TNT) with a standoff distance of one meter. The final run of the optimum model was carried out using a blast load equivalent to 500 kg of TNT. The air–structure interactions were simulated using finite element analysis software called “ANSYS AUTODYN”, where the deformation of the panel was the governing parameter to evaluate the behavior of different designs. The analysis showed minimum deformation of the CPS design with vertical and horizontal connecting plates in a masonry wall distanced at 500 mm from the panel. However, the other designs showed promising results, which could make them suitable for critical structural protection on different scales.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 541 ◽  
Author(s):  
Dimuthu Wanasinghe ◽  
Farhad Aslani ◽  
Guowei Ma ◽  
Daryoush Habibi

Polymer matrix composites have generated a great deal of attention in recent decades in various fields due to numerous advantages polymer offer. The advancement of technology has led to stringent requirements in shielding materials as more and more electronic devices are known to cause electromagnetic interference (EMI) in other devices. The drive to fabricate alternative materials is generated by the shortcomings of the existing metallic panels. While polymers are more economical, easy to fabricate, and corrosion resistant, they are known to be inherent electrical insulators. Since high electrical conductivity is a sought after property of EMI shielding materials, polymers with fillers to increase their electrical conductivity are commonly investigated for EMI shielding. Recently, composites with nanofillers also have attracted attention due to the superior properties they provide compared to their micro counterparts. In this review polymer composites with various types of fillers have been analysed to assess the EMI shielding properties generated by each. Apart from the properties, the manufacturing processes and morphological properties of composites have been analysed in this review to find the best polymer matrix composites for EMI shielding.


Sign in / Sign up

Export Citation Format

Share Document