scholarly journals Review of Polymer Composites with Diverse Nanofillers for Electromagnetic Interference Shielding

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 541 ◽  
Author(s):  
Dimuthu Wanasinghe ◽  
Farhad Aslani ◽  
Guowei Ma ◽  
Daryoush Habibi

Polymer matrix composites have generated a great deal of attention in recent decades in various fields due to numerous advantages polymer offer. The advancement of technology has led to stringent requirements in shielding materials as more and more electronic devices are known to cause electromagnetic interference (EMI) in other devices. The drive to fabricate alternative materials is generated by the shortcomings of the existing metallic panels. While polymers are more economical, easy to fabricate, and corrosion resistant, they are known to be inherent electrical insulators. Since high electrical conductivity is a sought after property of EMI shielding materials, polymers with fillers to increase their electrical conductivity are commonly investigated for EMI shielding. Recently, composites with nanofillers also have attracted attention due to the superior properties they provide compared to their micro counterparts. In this review polymer composites with various types of fillers have been analysed to assess the EMI shielding properties generated by each. Apart from the properties, the manufacturing processes and morphological properties of composites have been analysed in this review to find the best polymer matrix composites for EMI shielding.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chaobo Liang ◽  
Zhoujie Gu ◽  
Yali Zhang ◽  
Zhonglei Ma ◽  
Hua Qiu ◽  
...  

AbstractWith the widespread application of electronic communication technology, the resulting electromagnetic radiation pollution has been significantly increased. Metal matrix electromagnetic interference (EMI) shielding materials have disadvantages such as high density, easy corrosion, difficult processing and high price, etc. Polymer matrix EMI shielding composites possess light weight, corrosion resistance and easy processing. However, the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance. This review firstly discusses the key concept, loss mechanism and test method of EMI shielding. Then the current development status of EMI shielding materials is summarized, and the research progress of polymer matrix EMI shielding composites with different structures is illustrated, especially for their preparation methods and evaluation. Finally, the corresponding key scientific and technical problems are proposed, and their development trend is also prospected. "Image missing"


2013 ◽  
Vol 706-708 ◽  
pp. 95-98
Author(s):  
Mi Dan Li ◽  
Dong Mei Liu ◽  
Lu Lu Feng ◽  
Huan Niu ◽  
Yao Lu

Polymer matrix composites made from phenolic resin are filled with natural graphite powders. They are fabricated by compression molding technique. The density, electrical conductivity and flexural strength of composite are analyzed to determine the influences of mould pressure and mould pressing time on the physical, electrical and mechanical properties of composite. It is found that the density, electrical conductivity and flexural strength of composites increased with increasing mould pressure. Under pressure of 40 MPa for 60 min, the density, electrical conductivity and flexural strength of composites were 1.85 g/cm3, 4.35  103 S/cm and 70 MPa, respectively. The decreased gaps could be the main reason for the increasing of density, electrical conductivity and flexural strength as mould pressure increases. The results also show that the density of composites increased with increasing mould pressing time.


2018 ◽  
Vol 37 (15) ◽  
pp. 1011-1019 ◽  
Author(s):  
S Vigneshwaran ◽  
M Uthayakumar ◽  
V Arumugaprabu ◽  
R Deepak Joel Johnson

In recent decade, polymer matrix composites were extensively used in various engineering applications owing to their advanced properties over conventional materials and enhanced performance. This motivated the researchers to generate an extensive study and research work on polymer composites. In recent studies, the erosion properties of the polymer composite attract increasing attention among researchers. The potential enhancement in the erosion resistance property of filled composites tempted the researchers to find the feasibility of using various filler materials in polymer matrix for specific erosion resistance applications. However, only limited numbers of literature are available concerning the tribological performance of the filled composite. Hence in this study, an objective was set to review the various literature that explain the erosion characteristics of filled composites.


2018 ◽  
Vol 765 ◽  
pp. 60-64
Author(s):  
Seung Pyo Woo ◽  
Sung Min Park ◽  
Gyung Mok Nam ◽  
Young Choi ◽  
Sang Heon Park ◽  
...  

The GnF/SU-8 composites are new polymer matrix composites (PMCs) composed of graphite nanoflakes (GnFs) bound together by SU-8 photoresist. The PMCs therefore have excellent ultraviolet (UV) photopatternability and high electrical properties. In spite of the unique material properties of GnF/SU-8 composites, much still remains uncertain about their controllability in both UV photopatternability and electrical properties. Here, we investigate 7 kinds of GnF/SU-8 composites having different GnF concentrations of 5.0 to 25.0 wt.% to characterize the changes in the UV photopatternability (i.e., polymerized thickness and photopattern quality) and electrical conductivity of GnF/SU-8 composites caused by a variation in GnF concentration. The polymerized thickness of GnF/SU-8 composites is measured to be in the range of 4.06 to 23.99 μm, which is inversely proportional to GnF concentration and also directly proportional to UV dose (i.e., 345 to 3,450 mJ/cm2) because of the screening effect of GnF existed in the composites; the photopattern quality at the edge is in inverse proportion to GnF concentration. An increase in GnF concentration leads to a significant change in the electrical conductivity of GnF/SU-8 composites in a proportional way (up to 25.34 S/m). The GnF/SU-8 composites are expected to be widely used as UV photopatternable and electrically conductive PMCs for diverse engineering applications.


2021 ◽  
Vol 13 (1) ◽  
pp. 243-252
Author(s):  
M. M. Rahman ◽  
D. R. Sarker ◽  
M. M. Rahman ◽  
M. O. Faruk

Carbon nanofiber (CNF) is a very useful additive for improving the performance of polymer matrix composites, but the performance has sometimes been interrupted by limits appear within composite processing. Recently, CNF based polymer composites are intensely considered as promising materials in many application fields, such as electrical devices, electrode materials for batteries, supercapacitors, sensors, etc. Among these, the electrical conductivity is always the first priority need to be considered. Polyaniline (PANI) and PANI-CNF composites are synthesized by chemical oxidative polymerization of aniline monomers in acidic media. The electrical conductivity of PANI-CNF composites were found varies with the degree of amount of CNF under the effect of multiple factors such as the concentration of aniline monomer, reaction media, oxidant, reaction temperature, reaction time, etc. The maximum electrical conductivity was found 3.7131 S/cm of the PANI-CNF composite coming from the polymerization of aniline with 0.05 g CNF. The results of the synthesis also demonstrated that CNF can be an effective material to prepare electrically conducting polymer composites with ordered nanostructures.


2020 ◽  
pp. 096739112097141
Author(s):  
Kiran Shahapurkar ◽  
Vaibhav Darekar ◽  
Rashmi Banjan ◽  
Ningappa Nidasosi ◽  
Manzoore Elahi M Soudagar

Solid particle erosion of polymer matrix composites filled with naturally available and environment pollutant fillers have not been studied to the same level as for metals or ceramics and is focus of the present study. In this article, review of the research associated with the erosion response of polymer composites is presented. Particulate polymer composites are employed extensively owing to their enhanced specific properties and tribological response. Particulate filler particles such as environmental pollutants and naturally available ones need to be effectively incorporated in utilitarian applications so as to reduce land fill burden issues and other specific problems. Nevertheless, adequate data is not available in review articles on the erosion of fillers that are environment pollutants and thereby an ample amount of research can be carried out in this regard. Erosion behavior of polymer composites in particular has gained a lot of attention among researches in the recent decade. Viability of incorporating various fillers in polymer matrix for erosion resistive applications needs to be assessed so that the potential of these composites can be well understood. Therefore in this study, erosion response of polymer composites reinforced with fillers is reviewed with a focus on input parameters (impact velocity, impingement angle and erodent properties) and material properties (density).


2006 ◽  
Vol 977 ◽  
Author(s):  
Charles J. Capozzi ◽  
Rosario A. Gerhardt

AbstractThere are few studies that discuss the effect of the fabrication conditions and bulk thickness on the electrical conductivity of hot pressed polymer-matrix composites. For polymer-matrix composites that possess a segregated-network microstructure, the processing parameters can significantly impact the electrical properties and microstructure of the composite material. Our group has recently fabricated novel polymer-matrix nanocomposites, which possess a segregated network microstructure containing regular, polyhedral-shaped polymer matrix particles1-2. This paper investigates the effect of processing pressure and specimen thickness on the electrical properties and microstructure of hot pressed poly(methyl methacrylate) (PMMA) containing segregated networks of indium tin oxide (ITO) nanopowders.


Sign in / Sign up

Export Citation Format

Share Document