rotational ground motion
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Stefanie Donner

Seismic moment tensors are an important tool in geosciences on all spatial scales and for a broad range of applications. The basic underlying theory is established since decades. However, various factors influence the reliability of the inversion result, several of them are mutually dependent. Hence, a reliable retrieval of seismic moment tensors is still hampered in many cases, especially at regional event-receiver distances.To sample the entire wavefield due to a seismic source we need six components: three translational and three rotational ones. Up to now, only translational ground motion recordings were used for moment tensor retrieval, missing out valuable information. Using rotational in addition to the classical translational ground motions during waveform inversion for moment tensors mainly adds information on the vertical displacement gradient to the inversion problem. Furthermore, having available six instead of only three components per receiver location provides additional constraints on the sampling of the radiation pattern. As a result, the moment tensor components are resolved with higher precision and accuracy, even when the number of recording receivers is considerably reduced. Especially, components with a dependence to depth as well as the centroid depth can benefit significantly from additional rotational ground motion. Up to the time of writing this review only a few studies are published on the topic. Here, I summarise their findings and provide an overview over the possible capabilities of including rotational ground motion measurements to waveform inversion for seismic moment tensor retrieval.


2021 ◽  
Author(s):  
Céline Hadziioannou ◽  
Paul Neumann ◽  
Joachim Wassermann ◽  
Heiner Igel ◽  
Ulrich Schreiber ◽  
...  

<p>In seismology, new sensing technologies are currently emerging that can measure ground motion beyond the conventional seismic translation measurements. In particular, rotational motion sensors record an additional 3 components of ground motion and thus provide access to additional information about the seismic wavefield. </p><p>So far, most studies of rotational ground motion are mainly based on recordings of earthquakes or active sources. In this study, we push the limit towards the very weak motions associated with ocean-generated ambient seismic noise. Our aim is to show the potential of using these measurements in the context of ambient noise interferometry. </p><p>We use recordings from two ring lasers in Germany: the `G-Ring' at the Wettzell Geodetic Observatory, and `ROMY' at the Fürstenfeldbruck Observatory near Munich, at a distance of approximately 160 km. These are the most sensitive instruments to date which offer a local, direct measurement of rotational ground motion. </p><p>We demonstrate that the sensitivity of the Wettzell instrument has been sufficiently improved to detect Love waves in the primary microseismic frequency band. Both the G-Ring and ROMY ring lasers are also capable of detecting Love waves in the stronger secondary microseismic band. This latter frequency range is used to test the possibility of performing noise interferometry with rotational records. </p><p>The first results of rotational noise interferometry between the two ring lasers are promising. The correlation waveform is verified by comparison with interferometry carried out with co-located seismometer data at both locations, as well as with numerical simulations. </p><p>In conclusion, we show that ambient noise interferometry is in principle feasible using real rotational recordings of ocean-generated noise. This proof of concept study forms a first step towards noise interferometery of 6-component displacement data. </p>


2021 ◽  
Author(s):  
Betul Celik ◽  
Korbinian Sager ◽  
Heiner Igel

<p>We assess the potential of rotational ground motions to resolve time-dependent near surface structural heterogeneities using noise correlations. Recent studies reveal an increased sensitivity of gradient related observations to near surface structural heterogeneities (e.g., material contrast, cavities) compared to directly measured wavefields (and their time derivatives). The development of new sensing technologies, such as rotational ground motion sensors and distributing acoustic sensing (DAS), enable measurements of strain and rotations and motivate this study. Combining gradient related observations with ambient noise-based monitoring methods has the potential to increase both spatial and temporal resolution. In order to investigate the suggested benefits, we perform a numerical study in 2D, where we simulate seismic noise with random sources at random locations. We apply interferometric principles and calculate cross-correlations of the resulting noise traces recorded at different receiver locations for multiple realizations of the noise field. After analysing the convergence of the correlation functions in terms of simulation length and number of simulations, we compare noise correlations of acceleration and rotation rate for a homogenous reference and a perturbed model. Ultimately, we establish that noise correlations of wavefield gradients are more sensitive than noise correlations of wavefields to small-scale heterogeneity.</p>


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6904 ◽  
Author(s):  
David Sollberger ◽  
Heiner Igel ◽  
Cedric Schmelzbach ◽  
Pascal Edme ◽  
Dirk-Jan van Manen ◽  
...  

Recent progress in rotational sensor technology has made it possible to directly measure rotational ground-motion induced by seismic waves. When combined with conventional inertial seismometer recordings, the new sensors allow one to locally observe six degrees of freedom (6DOF) of ground-motion, composed of three orthogonal components of translational motion and three orthogonal components of rotational motion. The applications of such 6DOF measurements are manifold—ranging from wavefield characterization, separation, and reconstruction to the reduction of non-uniqueness in seismic inverse problems—and have the potential to revolutionize the way seismic data are acquired and processed. However, the seismological community has yet to embrace rotational ground-motion as a new observable. The aim of this paper is to give a high-level introduction into the field of 6DOF seismology using illustrative examples and to summarize recent progress made in this relatively young field. It is intended for readers with a general background in seismology. In order to illustrate the seismological value of rotational ground-motion data, we provide the first-ever 6DOF processing example of a teleseismic earthquake recorded on a multicomponent ring laser observatory and demonstrate how wave parameters (phase velocity, propagation direction, and ellipticity angle) and wave types of multiple phases can be automatically estimated using single-station 6DOF processing tools. Python codes to reproduce this processing example are provided in an accompanying Jupyter notebook.


2020 ◽  
Vol 223 (1) ◽  
pp. 161-179
Author(s):  
S Donner ◽  
M Mustać ◽  
B Hejrani ◽  
H Tkalčić ◽  
H Igel

SUMMARY Seismic moment tensors are an important tool and input variable for many studies in the geosciences. The theory behind the determination of moment tensors is well established. They are routinely and (semi-) automatically calculated on a global scale. However, on regional and local scales, there are still several difficulties hampering the reliable retrieval of the full seismic moment tensor. In an earlier study, we showed that the waveform inversion for seismic moment tensors can benefit significantly when incorporating rotational ground motion in addition to the commonly used translational ground motion. In this study, we test, what is the best processing strategy with respect to the resolvability of the seismic moment tensor components: inverting three-component data with Green’s functions (GFs) based on a 3-D structural model, six-component data with GFs based on a 1-D model, or unleashing the full force of six-component data and GFs based on a 3-D model? As a reference case, we use the inversion based on three-component data and 1-D structure, which has been the most common practice in waveform inversion for moment tensors so far. Building on the same Bayesian approach as in our previous study, we invert synthetic waveforms for two test cases from the Korean Peninsula: one is the 2013 nuclear test of the Democratic People’s Republic of Korea and the other is an Mw  5.4 tectonic event of 2016 in the Republic of Korea using waveform data recorded on stations in Korea, China and Japan. For the Korean Peninsula, a very detailed 3-D velocity model is available. We show that for the tectonic event both, the 3-D structural model and the rotational ground motion, contribute strongly to the improved resolution of the seismic moment tensor. The higher the frequencies used for inversion, the higher is the influence of rotational ground motions. This is an important effect to consider when inverting waveforms from smaller magnitude events. The explosive source benefits more from the 3-D structural model than from the rotational ground motion. Nevertheless, the rotational ground motion can help to better constraint the isotropic part of the source in the higher frequency range.


2020 ◽  
Author(s):  
Heiner Igel ◽  
Felix Bernauer ◽  
Joachim Wassermann ◽  
Shihao Yuan ◽  
Andre Gebauer ◽  
...  

<p>The ROMY ring laser was constructed with 4 non-orthogonal triangular-shaped cavities of 12 m side length in the Geophysical Observatory outside Munich, Germany, in 2016. The large dimensions of the individual rings have the benefit of allowing high sensitivity surpassing in principle the sensitivity of the G-ring at the Fundamentalstation Wettzell. However, the concrete construction of ROMY is geometrically less stable than the G-ring that is built on a rigid Xerodur plate. Each of the four rings has its own Sagnac frequency. The horizontal triangular ring laser at the top of the inverted tetrahedral ROMY structure allows direct comparison of teleseismic signals and noise with the G-ring at a distance of 200km. It also serves as redundant component. In principle, three orthogonal components of rotational ground motion can be obtained by linear combination from any combination of three rings, that - due to the variable Sagnac frequency - have different noise characteristics. We report on the behavior and observations of ROMY from a seismological point of view. It is fair to say that ROMY provides the most accurate direct 3-component rotational ground motion seismic observations to date. In combination with a collocated broadband seismometer as well as a surrounding small-scale seismic array, we analyse regional, teleseismic events, and ocean-generated noise and compare with array-derived rotation.</p>


Sign in / Sign up

Export Citation Format

Share Document