scholarly journals THE INFLUENCE OF HYDROPHOBIC COATING ON THE EFFICIENCY OF FIRE PROTECTION OF TEXTILE MATERIALS

Author(s):  
Yu. Tsapko ◽  
◽  
O. Bondarenko ◽  
А. Tsapko ◽  
◽  
...  

Abstract. The analysis of fire-retardant materials for fabrics is carried out and it is established that the paucity of data for explanation and description of the process of fire protection, neglect of elastic coatings, leads to ignition of fabric structures under the action of flame. The development of reliable methods for studying the conditions of fire protection of fabrics leads to the creation of new types of fire protective materials. Therefore, it becomes necessary to determine the conditions for the formation of a barrier both for high temperatures and for leaching in the presence of precipitation and to establish a mechanism for inhibition of these processes. In this regard, full-scale tests were carried out and it was found out that when the flame is applied to untreated model samples of tent elements made of canvas fabric, the surface ignites and spreads the flame, which leads to their complete combustion within 105...120 s, instead, the model The fire-resistant sample of tent elements did not catch fire when ignited with a gasoline-based substance, and the flame did not spread. In this case, the final combustion was recorded for 3 c and the swelling of the protective coating reached 3...5 mm, and the surface was charred on an area of about 80% from the inside. When tested for fire retardant efficiency for a fire-resistant sample treated with a water repellent (5 % solution of GDJ-94), a decrease in efficiency and carbonization of the material was recorded, which amounted to 100%, and for a fire-resistant sample treated with a water repellent (5 % solution), a decrease in efficiency was recorded due to the combustion of paraffin and local burnout of the material, and carbonization was 100 %. Obviously, such a mechanism of influence of the fire-retardant coating is the factor regulating the process, which preserves the integrity of the object. Thus, there is reason to argue about the possibility of targeted regulation of the processes of fire protection of the fabric by applying coatings capable of forming a protective layer on the surface of the material, which inhibits the rate of heat penetration.

2021 ◽  
Vol 4 (10(112)) ◽  
pp. 45-51
Author(s):  
Yuriy Tsapko ◽  
Zinovii Sirko ◽  
Roman Vasylyshyn ◽  
Oleksandr Melnyk ◽  
Аleksii Tsapko ◽  
...  

This paper reports an analysis of the flame retardants for fabrics that has revealed the fact that the meagerness of data to explain and describe the process of fire protection, specifically the neglect of elastic coatings, leads to that the structures made from fabrics are ignited under the influence of a flame. Devising reliable methods to study the fire protection conditions for fabrics results in the design of new types of fireproof materials. Therefore, there is a need to determine the conditions for the formation of a barrier for water mass transport and to establish a mechanism for slowing down water penetration through the material. In this regard, an estimation-experimental method has been constructed for determining mass transfer under the action of water when using a hydrophobic coating, which makes it possible to assess water penetration. Based on the experimental data and theoretical dependences, the intensity of mass flow under the action of water has been determined, which is 0.000177 kg/m2, which ensures fabric resistance. The study results have proven that the process of waterproofing the fabric involves inhibition of the mass transfer process under the action of water by insulating the surface of the fireproof fabric with a hydrophobic coating. It should be noted that the presence of a hydrophobic coating leads to blocking the fabric surface from moisture penetration. Such a mechanism behind the effect of the hydrophobic coating is likely the factor in adjusting the process through which the integrity of an object is preserved. Thus, the sample of fireproof fabric coated with a water repellent demonstrated, after exposure to water, that the amount of water absorbed did not exceed 0.00012 kg, and, for a fabric without a water repellent, was 0.01 kg. Thus, there is reason to assert the possibility of targeted adjustment of the processes related to water penetration of the fabric by using hydrophobic coatings that could form a protective layer on the surface of the material, which inhibits the rate of water penetration.


2020 ◽  
Vol 11 (3) ◽  
Author(s):  
V. V. Lomaha ◽  
O. Yu. Tsapko ◽  
Yu. V. Tsapko ◽  
O. P. Bondarenko

Reducing the fire prevention of timber is not only an economic task, but also has a social and environmental focus. From economic, technological and environmental perspective, an important problem in ensuring the viability and safe operation of construction sites is the development of fire-retardant coatings for wooden structures. The construction is increasingly looking for new highly effective means of fire protection of wood and wood products which should not only ensure the standardized fire resistance of wood, but also to maintain its operational parameters to solve environmental safety and durability. Studies of the effect of the radiation panel on the ignition of the wood sample have set the parameters of the flame ignition, which makes it possible to influence this process. It is proved that they consist in the formation of a layer of organic material on the surface, which provides heating to a critical temperature, when the intensive decomposition of the material begins with the release of the required amount of combustible gases and their ignition. This makes it possible to determine the effect of fire protection and the properties of protective compositions on the process of slowing down the rate of burning of wood. Experimental studies have confirmed that the untreated sample of wood, under the thermal action of the radiation panel has taken up, the flames spread over the entire surface, which led to its combustion. The application of a fire retardant varnish under the influence of temperature leads to a layer of foam coke and inhibition of heat transfer of high-temperature flame to the material and its ignition. Thanks to this, it became possible to determine the conditions for changing the parameters of combustion and braking during fire protection of wood, by forming a barrier for thermal conductivity. Thus, there is reason to argue for the possibility of directional control of the processes of fire protection of wood by the use of fireproof coatings that can form a protective layer on the surface of the material, which slows down the rate of burning of wood.


Author(s):  
Yu. Tsapko ◽  
◽  
А. Tsapko ◽  
O. Bondarenko ◽  
M. Suhanevich ◽  
...  

The results of experimental studies on the effectiveness of fire protection of easily erected structures made of flammable textile products are presented. An analysis of the directions of use of easily erected structures made of flammable textile products indicates a steady trend towards an increase in their use during the temporary fulfillment of certain tasks of the Armed Forces of Ukraine and units of the. During the heating of such structures, ignition and rapid spread of fire are possible. The operating statistics for easily erected structures have found a low level of safety due to the use of natural fibers (e.g., linen, cotton and blends), which are highly sensitive to heat and fire. Reduction of combustibility and the development of non-combustible and non-combustible materials is one of the main directions for preventing fires and solving the problem of expanding the scope of these materials. Treatment with fire protection means significantly affects the spread of the flame, allows you to reduce the smoke-generating ability and heat release significantly. After the test, it can be seen that the sample of the textile material sustains spontaneous combustion for more than 5 s; sample damage is more than 150 mm. After the test, it is clear that the sample of textile material does not support self-combustion for no more than 5 s; sample damage is no more than 100 mm. The inhibition of the process of ignition and flame propagation for such a sample is associated with the decomposition of fire retardants under the influence of temperature with the absorption of heat and the release of incombustible gases (nitrogen, carbon dioxide), a change in the direction of decomposition towards the formation of incombustible gases and a hardly combustible coke residue. This leads to an increase in the thickness of the coke layer and inhibition of the heat transfer of the high-temperature flame to the material, which indicates the possibility of the transition of textile materials during processing with a fire retardant composition to materials that are non-combustible, which do not spread the flame by the surface.


2021 ◽  
Vol 2 (10 (110)) ◽  
pp. 51-58
Author(s):  
Yuriy Tsapko ◽  
Roman Vasylyshyn ◽  
Oleksandr Melnyk ◽  
Vasyl Lomaha ◽  
Аleksii Tsapko ◽  
...  

The analysis of fire-protective materials for wooden building structures was carried out and the need to develop reliable methods for studying the process of washing out fire retardants from the surface of the building structure, which is necessary for the creation of new types of fire-protective materials, was established. That is why there arises a need to determine the conditions for the formation of a barrier for washing out and to establish a mechanism for inhibition of moisture transmission to the material. In this regard, a mathematical model was built of washing out fire retardants using a polymeric shell made of organic material as a coating, which makes it possible to estimate the effectiveness of a polymer shell by the amount of the washed-out fire retardant. According to the experimental data and theoretical dependences, the dynamics of the release of fire retardants from the fire-protective layer of the coating was calculated; it did not exceed 1.0 %, and therefore, ensures fire protection of timber. The results of determining the weight loss of the sample under the influence of water indicate the ambiguous impact of the nature of protection on the washout. In particular, this implies the availability of data sufficient for performing a high-quality process of moisture diffusion inhibition and, based on it, detection of the moment, from which a decrease in efficiency of a coating begins. The experimental studies proved that a sample of fire-protected timber after exposure to water for 30 days withstood the influence of a heat flow. In particular, the loss of timber weight after the temperature exposure was less than 6 %, and the temperature of flue gases did not exceed 185 °C. Thus, there is a reason to assert the possibility of directed control of the processes of fire protection of timber through the use of polymer coatings capable of forming a protective layer on the surface of fire-protected material, which inhibits the rate of washing out the fire retardants


2018 ◽  
Vol 27 (9) ◽  
pp. 17-25
Author(s):  
N. I. Konstantinova ◽  
T. Yu. Eremina ◽  
E. A. Nikolaeva ◽  
M. M. Almenbaev

Introduction. In order to reduce the fire hazard of textile materials (TM), scientific research is being carried out for the development of various methods of their fire protection. One of the directions in the field of decorative finishing TM with reduced flammability is their surface treatment with fire retardant compositions. Along with the development of fire retardants for TM, it is quite legitimate to study the effects of tissue on human skin, when in contact.Methods. At the stage of development of fire retardant compositions for surface treatment and the choice of the technology of their application, it is necessary to take into account the functional purpose of the TM, the scope of application and operational requirements.Discussion. In developing a fire retardant composition for surface treatment of TM that are in contact with human skin, the authors proposed the use of a number of phosphorus-containing compounds, which are effective fire retardants. However, a significant disadvantage of such compounds is their instability, decomposition and dissociation over time, which leads to irritation of the skin in direct contact with the material. Therefore, research has been carried out and optimal chemical compositions of stabilizers, buffer solutions and their ratios in the fire retardant have been selected. Their use for surface treatment of TM on acellulosic basis makes the TM resistant to ignition and does not adversely affect the skin of a person in direct contact.Conclusions. Based on the experimental data obtained, it follows that one of the possible ways to solve the problem of developing effective fire protection means that meet the requirements of normative documents in the field of fire safety and sanitary hygiene may be modification of compounds based on carbamide compounds with the selection of appropriate stabilizers and buffer solutions.


2021 ◽  
Vol 1038 ◽  
pp. 460-467
Author(s):  
Olga Skorodumova ◽  
Olena Tarakhno ◽  
Olena Chebotaryova ◽  
Dmitriy Saveliev ◽  
Fatih Mehmet Emen

The use of complex fire-retardant coatings based on ethyl silicate gel - diammonium hydrogen phosphate reduces the process of smoke formation during thermal exposure to treated tissue samples, which is promising for improving the fire safety of textile materials. The compositions are easy to obtain, they do not require specific processing conditions, do not contain toxic substances. This allows us to offer developed compositions for fire protection of textile materials used in facilities with a large number of people.


2021 ◽  
Vol 1038 ◽  
pp. 468-479
Author(s):  
Olga Skorodumova ◽  
Olena Tarakhno ◽  
Olena Chebotaryova ◽  
Oleg Bezuglov ◽  
Fatih Mehmet Emen

Based on the generalization of research results on the processes of obtaining SiO2 sols using tetraethoxysilane and ethyl silicates, the main factors influencing the elasticity of silica coatings on cotton fabrics and their fire-retardant properties are considered. The possibility of forming covalent bonds between the functional groups of cellulose, gel coating and flame retardant layer is considered, which explains the strong fixation of a thin layer of coating on the fibers of the fabric and improve its fire protection. The use of the developed compositions for fire-retardant elastic coatings based on ethyl silicate allows to increase the time of complete burning of cotton from 30s (untreated fabric) to 600s (treated with binary coating).


2020 ◽  
Vol 2020 (2) ◽  
pp. 64-69
Author(s):  
I Khaidarov ◽  
◽  
R Ismailov

This article presents studies of fire resistance in the treatment of expanded vermiculite, which depends on the size of the dispersed particles and the orientation of the granules, their moisture and temperature. It has been studied that one of the interesting and important in practice properties of vermiculite is its ability to swell and turn into a lightweight effective material for imparting fire resistance. The properties and compositions of vermiculite from the Tebinbulak deposit are studied, from which a flame-retardant suspension is prepared for processing textile materials based on vermiculite dissolved in orthophosphoric acid and alkali in an aqueous medium. When modifying materials with developed flame-retardant suspensions, it is possible to obtain fire-resistant textile materials that meet the requirements of GOST for fire resistance, smoke generation and other physical and mechanical properties.


Author(s):  
Yu. Tsapko ◽  
◽  
А. Tsapko ◽  
O. Bondarenko ◽  
V. Lomaha ◽  
...  

Abstract. The processes of creation of fire-retardant varnish for wood consisting of a mixture of inorganic and polymeric substances are investigated in the work. It is established that the optimization of the inorganic component leads to a directional ratio of mineral acids and urea capable of effective fire protection of the material. Studies have shown that at the initial temperature of gaseous combustion products T = 68 °C, when exposed to the radiation panel, the untreated sample ignited after 146 s, the flame spread over the entire surface, instead, the sample fire-protected varnish did not ignite, the maximum temperature was 105 °C. In this case, as evidenced by the results of heat resistance, there is a change in the structure of the protective film of the coating. The thickness of the protective layer increases due to the decomposition of the composition, which leads to inhibition of oxidation in the gas and condensed phase, change the direction of decomposition towards the formation of non-combustible gases and combustible coke residue, reduce material combustion and increase flammability index. The coating under the influence of high temperature promotes the formation of a heat-insulating layer of coke, which prevents burning and the passage of high temperature to the material, which is confirmed by the absence of the process of ignition of fire-retardant wood. Features of braking of process of ignition and distribution of a flame of the wood processed by a varnish which consist in several aspects are established. This is the formation of a heat-insulating layer of coke, which prevents burning and the passage of high temperatures to the material, which is confirmed by the absence of the process of ignition of fire-retardant reeds. This indicates the possibility of targeted control of high temperature transfer processes to organic material through the use of special coatings for wood products.


Author(s):  
Lyubov Vakhitova ◽  
◽  
Nadiya Taran ◽  
Konstantin Kalafat ◽  
◽  
...  

Purpose. Identification of the main directions of evolution of scientific researches concerning development and improvement of fire protective reactive coatings of intumescent type for steel constructions. Methods. Analysis of literature sources, study and generalization of information, classification and modeling of chemical processes. Results. As a result of the performed researches it has been shown that of all the developed reactive fire protection systems for increasing the fire resistance of steel structures the intumescent composition of ammonium polyphosphate/ pentaerythritol / melamine / polymer is the most widespread and economically justified. To reduce the cost of fire protection measures, it is necessary to improve the coatings of the intumescent type in the following main areas: increasing of fire protection efficiency with a decrease in the thickness of the fire protection layer; prolongation of life time with strengthening of resistance to external factors; reducing the cost of the prescription composition of intumescent paint due to the use of nanomaterials. Scientific novelty. It has been established that nanoclays, nanooxides of metals and silicon, LDH compounds and their analogues should be considered the most promising and multifunctional. The presence of nanomaterials in intumescent compositions allows to increase the environmental parameters of fire-retardant treatment due to the rejection of halogen flame retardants, boron compounds, formaldehyde resins. In addition, the presence of nanocompounds in intumescent coatings significantly reduces smoke in fire. Practical significance. The conclusions obtained from the literature review are of practical importance for the development of new approaches to the design of fire-fighting materials with improved performance through the use of nanomaterials, which provides a strong fire retardant foam char layer and provides rigidity of the insulation frame.


Sign in / Sign up

Export Citation Format

Share Document