necrotrophic effector
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. 359-392
Author(s):  
Gayan K. Kariyawasam ◽  
◽  
Timothy L. Friesen ◽  

This chapter discusses understanding the plant-pathogen interaction associated with septorium nodorum blotch of wheat. It begins by reviewing the necrotrophic effector-host sensitivity gene interactions in the wheat-P. nodorum system. It then reviews the genetic relationship between NE-sensitivity gene interactions and the importance of these interactions in the field. Additional QTL associated with susceptibility/resistance to P. nodorum is also discussed, followed by a section on the impact of genome sequencing in characterizing NE-sensitivity gene interactions.


2021 ◽  
pp. 435-474
Author(s):  
Ramesh Chand ◽  
◽  
Sudhir Navathe ◽  
Sandeep Sharma ◽  
◽  
...  

This chapter reviews advances in breeding techniques for durable resistance to spot blotch in cereals. It starts by highlighting the spread, economic importance and the disease cycle of spot blotch. The chapter then goes on to examine the diversity of the pathogen and physiological specialization. This is then followed by a discussion on the identification of resistance sources, as well as the histological, biochemical and morphological components of resistance. The chapter also reviews molecular approaches for resistance breeding, specifically focusing on quantitative trait loci (QTL and genome-wide association mapping (GWAS) studies. Resistance genes and their possible deployment are also discussed, along with a section on low molecular weight toxins and their possible role in pathogenicity. The chapter also examines necrotrophic effector triggered susceptibility and associated genes and breeding for spot blotch resistance in wheat. Breeding for spot blotch resistance in barley is also discussed, before concluding with a discussion on farmers participatory research in the release of spot blotch resistant varieties.


2021 ◽  
Author(s):  
Bayantes Dagvadorj ◽  
Megan A. Outram ◽  
Simon J. Williams ◽  
Peter S. Solomon

SummaryThe plant pathogen Parastagonospora nodorum secretes necrotrophic effectors to promote disease. These effectors induce cell death on wheat cultivars carrying dominant susceptibility genes in an inverse gene-for-gene manner. However, the molecular mechanisms underpinning these interactions and resulting cell death remain unclear. Here, we used a yeast-two-hybrid library approach to identify wheat proteins that interact with the necrotrophic effector ToxA. Using this strategy, we identified an interaction between ToxA and a wheat transmembrane NDR/HIN1-like protein (TaNHL10) and confirmed the interaction using in-planta co-immunoprecipitation and confocal microscopy co-localization analysis. We showed that the C-terminus of TaNHL10 is extracellular whilst the N-terminus was localized in the cytoplasm. Further analyses using yeast-two-hybrid and confocal microscopy co-localization showed that ToxA interacts with the C-terminal LEA2 extracellular domain of TaNHL10. Random mutagenesis was then used to identify a ToxA mutant, ToxAN109D, which was unable to interact with TaNHL10 in yeast-two-hybrid assays. Subsequent heterologous expression and purification of ToxAN109D in Nicotiania benthamiana revealed that the mutated protein was unable to induce necrosis on Tsn1-dominant wheat cultivars confirming that the interaction of ToxA with TaNHL10 is required to induce cell death. Collectively, these data advance our understanding on how ToxA induces cell death during infection and further highlights the importance of host cell surface interactions in necrotrophic pathosystems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254541
Author(s):  
Sébastien Ribeiro ◽  
Philippe Label ◽  
Dominique Garcia ◽  
Pascal Montoro ◽  
Valérie Pujade-Renaud

Corynespora cassiicola, a fungal plant pathogen with a large host range, causes important damages in rubber tree (Hevea brasiliensis), in Asia and Africa. A small secreted protein named cassiicolin was previously identified as a necrotrophic effector required for the virulence of C. cassiicola in specific rubber tree clones. The objective of this study was to decipher the cassiicolin-mediated molecular mechanisms involved in this compatible interaction. We comparatively analyzed the RNA-Seq transcriptomic profiles of leaves treated or not with the purified cassiicolin Cas1, in two rubber clones: PB260 (susceptible) and RRIM600 (tolerant). The reads were mapped against a synthetic transcriptome composed of all available transcriptomic references from the two clones. Genes differentially expressed in response to cassiicolin Cas1 were identified, in each clone, at two different time-points. After de novo annotation of the synthetic transcriptome, we analyzed GO enrichment of the differentially expressed genes in order to elucidate the main functional pathways impacted by cassiicolin. Cassiicolin induced qualitatively similar transcriptional modifications in both the susceptible and the tolerant clones, with a strong negative impact on photosynthesis, and the activation of defense responses via redox signaling, production of pathogenesis-related protein, or activation of the secondary metabolism. In the tolerant clone, transcriptional reprogramming occurred earlier but remained moderate. By contrast, the susceptible clone displayed a late but huge transcriptional burst, characterized by massive induction of phosphorylation events and all the features of a hypersensitive response. These results confirm that cassiicolin Cas1 is a necrotrophic effector triggering a hypersensitive response in susceptible rubber clones, in agreement with the necrotrophic-effector-triggered susceptibility model.


2021 ◽  
Author(s):  
Gayan K. Kariyawasam ◽  
Jonathan K. Richards ◽  
Nathan A. Wyatt ◽  
Katherine L.D. Running ◽  
Steven S. Xu ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Marwa Laribi ◽  
Alireza Akhavan ◽  
Sarrah M'Barek ◽  
Amor Yahyaoui ◽  
Stephen Ernest Strelkov ◽  
...  

Pyrenophora tritici-repentis (Ptr) causes tan spot, an important foliar disease of wheat. A collection of Ptr isolates from Tunisia, located in one of the main secondary centers of diversification of durum wheat, was tested for phenotypic race classification based on virulence on a host differential set, and for the presence of the necrotrophic effector (NE) genes ToxA, ToxB , and toxb by PCR analysis. While races 2, 4, 5, 6, 7, and 8 were identified according to their virulence phenotypes, PCR testing indicated the presence of ‘atypical’ isolates that induced necrosis on the wheat differential ‘Glenlea’, but lacked the expected ToxA gene, suggesting the involvement of other NEs in the Ptr/wheat interaction. Genetic diversity and the Ptr population structure were explored further by examining 59 Tunisian isolates and 35 isolates from Algeria, Azerbaijan, Canada, Iran, and Syria using 24 simple sequence repeat markers. Average genetic diversity, overall gene flow and percentage polymorphic loci were estimated as 0.58, 2.09 and 87%, respectively. Analysis of molecular variance showed that 81% of the genetic variance occurred within populations and 19% between populations. Cluster analysis by the unweighted pair group method indicated that ToxB- isolates grouped together and were distantly related to ToxB+ isolates. Based on Nei’s analysis, the global collection clustered into two distinct groups according to their region of origin. The results suggest that both geographic origin and the host-specificity imposed by different NEs can lead to differentiation among Ptr populations.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Sudhir Navathe ◽  
Punam Singh Yadav ◽  
Ramesh Chand ◽  
Vinod Kumar Mishra ◽  
Neeraj Kumar Vasistha ◽  
...  

The ToxA–Tsn1 system is an example of an inverse gene-for-gene relationship. The gene ToxA encodes a host-selective toxin (HST) which functions as a necrotrophic effector and is often responsible for the virulence of the pathogen. The genomes of several fungal pathogens (e.g., Pyrenophora tritici-repentis, Parastagonospora nodorum, and Bipolaris sorokiniana) have been shown to carry the ToxA gene. Tsn1 is a sensitivity gene in the host, whose presence generally helps a ToxA-positive pathogen to cause spot blotch in wheat. Cultivars lacking Tsn1 are generally resistant to spot blotch; this resistance is attributed to a number of other known genes which impart resistance in the absence of Tsn1. In the present study, 110 isolates of B. sorokiniana strains, collected from the ME5A and ME4C megaenvironments of India, were screened for the presence of the ToxA gene; 77 (70%) were found to be ToxA positive. Similarly, 220 Indian wheat cultivars were screened for the presence of the Tsn1 gene; 81 (36.8%) were found to be Tsn1 positive. When 20 wheat cultivars (11 with Tsn1 and 9 with tsn1) were inoculated with ToxA-positive isolates, seedlings of only those carrying the Tsn1 allele (not tsn1) developed necrotic spots surrounded by a chlorotic halo. No such distinction between Tsn1 and tsn1 carriers was observed when adult plants were inoculated. This study suggests that the absence of Tsn1 facilitated resistance against spot blotch of wheat. Therefore, the selection of wheat genotypes for the absence of the Tsn1 allele can improve resistance to spot blotch.


2019 ◽  
Author(s):  
Nina V. Mironenko ◽  
Alexandra S. Orina ◽  
Nadezhda M. Kovalenko

This study shows that the necrotrophic effector gene ToxA is differentially expressed in isolates of P. tritici-repentis fungus at different time periods after inoculation of the wheat variety Glenlea which has the gene Tsn1 controlling sensitivity to the necrosis inducing toxin Ptr ToxA. Two P. tritici-repentis isolates with different ability to cause necrosis on the leaves of Glenlea variety (nec + and nec-) and with different expression level of ToxA and gene of factor transcription PtrPf2 in vitro were used for analysis. Isolates of P. tritici-repentis are characterized by the differential expression of ToxA in planta. The expression of the ToxA gene in P. tritici-repentis ToxA+ isolates significantly increased when infected the wheat leaves compared to ToxA expression results obtained in vitro. The levels of ToxA expression in both isolates differed significantly after 24, 48 and 96 hours after inoculation, however, the dynamics of the trait change over time were similar. However, the highest ToxA expression in the virulent (nec+) isolate in contrast with the avirulent (nec-) isolate was observed at a point of 48 hours. Whereas the expression of regulating transcription factor PtrPf2 in planta differed imperceptibly from expression in vitro throughout the observation period. Obviously, the role of the fungal transcription factor in regulating the effector gene expression weakens in planta, and other mechanisms regulating the expression of pathogen genes at the biotrophic stage of the disease develop.


2016 ◽  
Vol 6 (12) ◽  
pp. 4139-4150 ◽  
Author(s):  
Simerjot K Virdi ◽  
Zhaohui Liu ◽  
Megan E Overlander ◽  
Zengcui Zhang ◽  
Steven S Xu ◽  
...  

Abstract Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot and SNB when recognized by the wheat Tsn1 gene. Most work to study these interactions has been conducted in common wheat, but little has been done in durum wheat. Here, quantitative trait loci (QTL) analysis of a segregating biparental population indicated that the Tsc2-Ptr ToxB interaction plays a prominent role in the development of tan spot in durum. However, analysis of two biparental populations indicated that the Tsn1-ToxA interaction was not associated with the development of tan spot, but was strongly associated with the development of SNB. Pa. nodorum expressed ToxA at high levels in infected Tsn1 plants, whereas ToxA expression in P. tritici-repentis was barely detectable, suggesting that the differences in disease levels associated with the Tsn1-ToxA interaction were due to differences in pathogen expression of ToxA. These and previous results together indicate that: (1) the effects of Tsn1-ToxA on tan spot in common wheat can range from nonsignificant to highly significant depending on the host genetic background; (2) Tsn1-ToxA is not a significant factor for tan spot development in durum wheat; and (3) Tsn1-ToxA plays a major role in SNB development in both common and durum wheat. Durum and common wheat breeders alike should strive to remove both Tsc2 and Tsn1 from their materials to achieve disease resistance.


Sign in / Sign up

Export Citation Format

Share Document