acidified foods
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2020 ◽  
Vol 85 (4) ◽  
pp. 918-925 ◽  
Author(s):  
Robert E. Price ◽  
Madyson Longtin ◽  
Summer Conley‐Payton ◽  
Jason A. Osborne ◽  
Suzanne D. Johanningsmeier ◽  
...  

EDIS ◽  
2019 ◽  
Vol 2019 (2) ◽  
pp. 3
Author(s):  
Matthew Krug ◽  
Soohyoun Ahn

Food businesses are subject to a wide range of regulatory requirements. Food entrepreneurs who want to produce and sell acidified foods or low-acid canned foods must abide by specific FDA regulations. This new 3-page document intends to clarify the initial steps food entrepreneurs must implement to comply with these regulations. This factsheet is one in a Food Entrepreneurship in Florida series, which assists beginning and established food entrepreneurs by providing them information on topics highly relevant to starting and running a food business: regulations, safety, labeling, processing, and marketing. Written by Matthew Krug and Soohyoun Ahn, and published by the UF/IFAS Food Science and Human Nutrition Department, February 2019.  http://edis.ifas.ufl.edu/fs318


2014 ◽  
Vol 77 (5) ◽  
pp. 788-795 ◽  
Author(s):  
OSCAR ACOSTA ◽  
XIAOFAN GAO ◽  
ELIZABETH K. SULLIVAN ◽  
OLGA I. PADILLA-ZAKOUR

U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25°C/none/25°C (cold fill), (ii) 25°C/none/2°C (cold fill/refrigerated), (iii) 85°C/none/25°C (hot fill), and (iv) 25°C/100°C for 16 min/25°C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs.


2013 ◽  
Vol 76 (7) ◽  
pp. 1245-1249 ◽  
Author(s):  
F. BREIDT ◽  
K. KAY ◽  
J. COOK ◽  
J. OSBORNE ◽  
B. INGHAM ◽  
...  

A critical factor in ensuring the safety of acidified foods is the establishment of a thermal process that assures the destruction of acid-resistant vegetative pathogenic and spoilage bacteria. For acidified foods such as dressings and mayonnaises with pH values of 3.5 or higher, the high water phase acidity (acetic acid of 1.5 to 2.5% or higher) can contribute to lethality, but there is a lack of data showing how the use of common ingredients such as acetic acid and preservatives, alone or in combination, can result in a 5-log reduction for strains of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in the absence of a postpackaging pasteurization step. In this study, we determined the times needed at 10°C to achieve a 5-log reduction of E. coli O157:H7, S. enterica, and L. monocytogenes in pickling brines with a variety of acetic and benzoic acid combinations at pH 3.5 and 3.8. Evaluation of 15 different acid-pH combinations confirmed that strains of E. coli O157:H7 were significantly more acid resistant than strains of S. enterica and L. monocytogenes. Among the acid conditions tested, holding times of 4 days or less could achieve a 5-log reduction for vegetative pathogens at pH 3.5 with 2.5% acetic acid or at pH 3.8 with 2.5% acetic acid containing 0.1% benzoic acid. These data indicate the efficacy of benzoic acid for reducing the time necessary to achieve a 5-log reduction in target pathogens and may be useful for supporting process filings and the determination of critical controls for the manufacture of acidified foods.


2010 ◽  
Vol 77 (3) ◽  
pp. 889-895 ◽  
Author(s):  
Althea M. Hosein ◽  
Frederick Breidt ◽  
Charles E. Smith

ABSTRACTMicrobiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such asEscherichia coliO157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology ofE. coliO157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of anE. coliO157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.


2009 ◽  
Vol 72 (3) ◽  
pp. 503-509 ◽  
Author(s):  
DEOG-HWAN OH ◽  
YOUWEN PAN ◽  
ELAINE BERRY ◽  
MICHAEL COOLEY ◽  
ROBERT MANDRELL ◽  
...  

A number of studies on the influence of acid on Escherichia coli O157:H7 have shown considerable strain differences, but limited information has been reported to compare the acid resistance based on the different sources of E. coli O157:H7 isolates. The purpose of this study was to determine the survival of E. coli O157:H7 strains isolated from five sources (foods, bovine carcasses, bovine feces, water, and human) in 400 mM acetic acid solutions under conditions that are typical of acidified foods. The isolates from bovine carcasses, feces, and water survived acetic acid treatment at pH 3.3 and 30°C significantly (P ≤ 0.05) better than did any food or human isolates. However, resistance to acetic acid significantly increased as temperature decreased to 15°C for a given pH, with little (P ≥ 0.05) difference among the different isolation sources. All groups of E. coli O157:H7 strains showed more than 1.8- to 4.5-log reduction at pH 3.3 and 30°C after 25 min. Significantly reduced (less than 1-log reduction) lethality for all E. coli O157:H7 strain mixtures was observed when pH increased to 3.7 or 4.3, with little difference in acetic acid resistance among the groups. The addition of glutamate to the acetic acid solution or anaerobic incubation provided the best protection compared with the above conditions for all groups of isolates. These results suggest that temperature, pH, and atmospheric conditions are key factors in establishing strategies for improving the safety of acidified foods.


2008 ◽  
Vol 71 (12) ◽  
pp. 2404-2409 ◽  
Author(s):  
AUDREY C. KRESKE ◽  
KRISTIN BJORNSDOTTIR ◽  
FRED BREIDT ◽  
HOSNI HASSAN

The ability of Escherichia coli O157:H7 to survive in acidified vegetable products is of concern because of previously documented outbreaks associated with fruit juices. A study was conducted to determine the survival of E. coli O157:H7 in organic acids at pH values typical of acidified vegetable products (pH 3.2 and 3.7) under different dissolved oxygen conditions (≤0.05 and 5 mg/liter) and a range of ionic strengths (0.086 to 1.14). All solutions contained 20 mM gluconic acid, which was used as a noninhibitory low pH buffer to compare the individual acid effect to that of pH alone on the survival of E. coli O157:H7. E. coli O157:H7 cells challenged in buffered solution with ca. 5-mg/liter dissolved oxygen (present in tap water) over a range of ionic strengths at pH 3.2 exhibited a decrease in survival over 6 h at 30°C as the ionic strength was increased. Cells challenged in 40 mM protonated l-lactic and acetic acid solutions with ionic strength of 0.684 achieved a >4.7-log CFU/ml reduction at pH 3.2. However, under oxygen-limiting conditions in an anaerobic chamber, with ≤0.05-mg/liter oxygen, E. coli O157:H7 cells showed ≤1.55-log CFU/ml reduction regardless of pH, acid type, concentration, or ionic strength. Many acid and acidified foods are sold in hermetically sealed containers with oxygen-limiting conditions. Our results demonstrate that E. coli O157:H7 may survive better than previously expected from studies with acid solutions containing dissolved oxygen.


Sign in / Sign up

Export Citation Format

Share Document