scholarly journals Modeling the Effects of Sodium Chloride, Acetic Acid, and Intracellular pH on Survival ofEscherichia coliO157:H7

2010 ◽  
Vol 77 (3) ◽  
pp. 889-895 ◽  
Author(s):  
Althea M. Hosein ◽  
Frederick Breidt ◽  
Charles E. Smith

ABSTRACTMicrobiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such asEscherichia coliO157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology ofE. coliO157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of anE. coliO157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

2013 ◽  
Vol 76 (7) ◽  
pp. 1245-1249 ◽  
Author(s):  
F. BREIDT ◽  
K. KAY ◽  
J. COOK ◽  
J. OSBORNE ◽  
B. INGHAM ◽  
...  

A critical factor in ensuring the safety of acidified foods is the establishment of a thermal process that assures the destruction of acid-resistant vegetative pathogenic and spoilage bacteria. For acidified foods such as dressings and mayonnaises with pH values of 3.5 or higher, the high water phase acidity (acetic acid of 1.5 to 2.5% or higher) can contribute to lethality, but there is a lack of data showing how the use of common ingredients such as acetic acid and preservatives, alone or in combination, can result in a 5-log reduction for strains of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in the absence of a postpackaging pasteurization step. In this study, we determined the times needed at 10°C to achieve a 5-log reduction of E. coli O157:H7, S. enterica, and L. monocytogenes in pickling brines with a variety of acetic and benzoic acid combinations at pH 3.5 and 3.8. Evaluation of 15 different acid-pH combinations confirmed that strains of E. coli O157:H7 were significantly more acid resistant than strains of S. enterica and L. monocytogenes. Among the acid conditions tested, holding times of 4 days or less could achieve a 5-log reduction for vegetative pathogens at pH 3.5 with 2.5% acetic acid or at pH 3.8 with 2.5% acetic acid containing 0.1% benzoic acid. These data indicate the efficacy of benzoic acid for reducing the time necessary to achieve a 5-log reduction in target pathogens and may be useful for supporting process filings and the determination of critical controls for the manufacture of acidified foods.


2009 ◽  
Vol 72 (3) ◽  
pp. 503-509 ◽  
Author(s):  
DEOG-HWAN OH ◽  
YOUWEN PAN ◽  
ELAINE BERRY ◽  
MICHAEL COOLEY ◽  
ROBERT MANDRELL ◽  
...  

A number of studies on the influence of acid on Escherichia coli O157:H7 have shown considerable strain differences, but limited information has been reported to compare the acid resistance based on the different sources of E. coli O157:H7 isolates. The purpose of this study was to determine the survival of E. coli O157:H7 strains isolated from five sources (foods, bovine carcasses, bovine feces, water, and human) in 400 mM acetic acid solutions under conditions that are typical of acidified foods. The isolates from bovine carcasses, feces, and water survived acetic acid treatment at pH 3.3 and 30°C significantly (P ≤ 0.05) better than did any food or human isolates. However, resistance to acetic acid significantly increased as temperature decreased to 15°C for a given pH, with little (P ≥ 0.05) difference among the different isolation sources. All groups of E. coli O157:H7 strains showed more than 1.8- to 4.5-log reduction at pH 3.3 and 30°C after 25 min. Significantly reduced (less than 1-log reduction) lethality for all E. coli O157:H7 strain mixtures was observed when pH increased to 3.7 or 4.3, with little difference in acetic acid resistance among the groups. The addition of glutamate to the acetic acid solution or anaerobic incubation provided the best protection compared with the above conditions for all groups of isolates. These results suggest that temperature, pH, and atmospheric conditions are key factors in establishing strategies for improving the safety of acidified foods.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 849
Author(s):  
Vinicius Silva Castro ◽  
Yhan da Silva Mutz ◽  
Denes Kaic Alves Rosario ◽  
Adelino Cunha-Neto ◽  
Eduardo Eustáquio de Souza Figueiredo ◽  
...  

Salmonella and Escherichia coli are the main bacterial species involved in food outbreaks worldwide. Recent reports showed that chemical sanitizers commonly used to control these pathogens could induce antibiotic resistance. Therefore, this study aimed to describe the efficiency of chemical sanitizers and organic acids when inactivating wild and clinical strains of Salmonella and E. coli, targeting a 4-log reduction. To achieve this goal, three methods were applied. (i) Disk-diffusion challenge for organic acids. (ii) Determination of MIC for two acids (acetic and lactic), as well as two sanitizers (quaternary compound and sodium hypochlorite). (iii) The development of inactivation models from the previously defined concentrations. In disk-diffusion, the results indicated that wild strains have higher resistance potential when compared to clinical strains. Regarding the models, quaternary ammonium and lactic acid showed a linear pattern of inactivation, while sodium hypochlorite had a linear pattern with tail dispersion, and acetic acid has Weibull dispersion to E. coli. The concentration to 4-log reduction differed from Salmonella and E. coli in acetic acid and sodium hypochlorite. The use of organic acids is an alternative method for antimicrobial control. Our study indicates the levels of organic acids and sanitizers to be used in the inactivation of emerging foodborne pathogens.


2014 ◽  
Vol 77 (5) ◽  
pp. 788-795 ◽  
Author(s):  
OSCAR ACOSTA ◽  
XIAOFAN GAO ◽  
ELIZABETH K. SULLIVAN ◽  
OLGA I. PADILLA-ZAKOUR

U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25°C/none/25°C (cold fill), (ii) 25°C/none/2°C (cold fill/refrigerated), (iii) 85°C/none/25°C (hot fill), and (iv) 25°C/100°C for 16 min/25°C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs.


2011 ◽  
Vol 66 (11-12) ◽  
pp. 605-613 ◽  
Author(s):  
He Wang ◽  
Ruijin Yang ◽  
Xiao Hua ◽  
Zhong Zhang ◽  
Wei Zhao ◽  
...  

High-level production of recombinant glucose isomerase (rGI) is desirable for lactulose synthesis. In this study, the xylA gene encoding glucose isomerase from Actinoplanes missouriensis CICIM B0118(A) was cloned and expressed in E. coli BL21(DE3), and high-level production was performed by optimization of the medium composition. rGI was purified from a recombinant E. coli BL21(DE3) and characterized. The optimum pH value of the purified enzyme was 8.0 and it was relatively stable within the pH range of 7.0 - 9.0. Its optimum temperature was around 85 °C, and it exhibited good thermostability when the temperature was lower than 90 °C. The maximum enzyme activity required the presence of both Co2+ and Mg2+, at the concentrations of 200 μM and 8 mM, respectively. With high-level expression and the simple one-step chromatographic purification of the His-tagged recombinant enzyme, this GI could be used in industrial production of lactulose as a potential economic tool


2013 ◽  
Vol 4 (1) ◽  
pp. 81-88 ◽  
Author(s):  
T. Koottatep ◽  
S. Phuphisith ◽  
T. Pussayanavin ◽  
A. Panuvatvanich ◽  
C. Polprasert

Thermal application has been widely used for pathogen inactivation in various fields. The purpose of this research was to develop a model of pathogen inactivation in septic tanks operating at various temperatures. Four laboratory-scale septic tanks fed with septage were operated at temperatures of 30, 40, 50 and 60 °C and Escherichia coli (E. coli) was selected as the pathogenic indicator. The efficiencies of E. coli inactivation were found to increase with increasing temperatures, while the opposites were observed for chemical oxygen demand (COD) reduction. At 60 °C, the E. coli concentrations were reduced from 9.6 × 106 to about 10 most probable number (MPN)/100 mL or 6 log reduction. The kinetics of E. coli reduction followed a modified Weibull model which could be applied to septic tank design and operation. The percentage COD removal was found to be 93, 94, 89 and 84 at temperatures of 32, 40, 50 and 60 °C, respectively. The results of this study suggested that pathogenic microorganisms in septic tanks could be inactivated to be at a safe level with thermal application.


2017 ◽  
Vol 80 (12) ◽  
pp. 2014-2021 ◽  
Author(s):  
Evann L. Dufort ◽  
Jonathan Sogin ◽  
Mark R. Etzel ◽  
Barbara H. Ingham

ABSTRACT Thermal inactivation kinetics for single strains of Shiga toxin–producing Escherichia coli (STEC), Listeria monocytogenes, and Salmonella enterica were measured in acidified tryptic soy broth (TSB; pH 4.5) heated at 54°C. Inactivation curves also were measured for single-pathogen five-strain cocktails of E. coli O157:H7, L. monocytogenes, and S. enterica heated in tomato purée (pH 4.5) at 52, 54, 56, and 58°C. Inactivation curves were fit using log-linear and nonlinear (Weibull) models. The Weibull model yields the time for a 5-log reduction (t*) and a curve shape parameter (β). Decimal reduction times (D-values) and thermal resistance constants (z-values) from the two models were compared by defining t* = 5D* for the Weibull model. When the log-linear and Weibull models match at the 5-log reduction time, then t* = 5D* = 5D and D = D*. In 18 of 20 strains heated in acidified TSB, D and D* for the two models were not significantly different, although nonlinearity was observed in 35 of 60 trials. Similarly, in 51 of 52 trials for pathogen cocktails heated in tomato purée, D and D* were not significantly different, although nonlinearity was observed in 31% of trials. At a given temperature, D-values for S. enterica << L. monocytogenes < E. coli O157:H7 in tomato purée (pH 4.5). When using the two models, z-values calculated from the D-values were not significantly different for a given pathogen. Across all pathogens, z-values for E. coli O157:H7 and S. enterica were not different but were significantly lower than the z-values for L. monocytogenes. These results are useful for supporting process filings for tomato-based acidified food products with pH 4.5 and below and are relevant to small processors of tomato-based acidified canned foods who do not have the resources to conduct research on and validate pathogen lethality.


2009 ◽  
Vol 72 (6) ◽  
pp. 1201-1208 ◽  
Author(s):  
HUA YANG ◽  
PATRICIA A. KENDALL ◽  
LYDIA MEDEIROS ◽  
JOHN N. SOFOS

Solutions of selected household products were tested for their effectiveness against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. Hydrogen peroxide (1.5 and 3%), vinegar (2.5 and 5% acetic acid), baking soda (11, 33, and 50% sodium bicarbonate), household bleach (0.0314, 0.0933, and 0.670% sodium hypochlorite), 5% acetic acid (prepared from glacial acetic acid), and 5% citric acid solutions were tested against the three pathogens individually (five-strain composites of each, 108 CFU/ml) by using a modified AOAC International suspension test at initial temperatures of 25 and 55°C for 1 and 10 min. All bleach solutions (pH 8.36 to 10.14) produced a >5-log reduction of all pathogens tested after 1 min at 25°C, whereas all baking soda solutions (pH 7.32 to 7.55) were ineffective (<1-log reduction) even after 10 min at an initial temperature of 55°C. After 1 min at 25°C, 3% hydrogen peroxide (pH 2.75) achieved a >5-log reduction of both Salmonella Typhimurium and E. coli O157:H7, whereas undiluted vinegar (pH 2.58) had a similar effect only against Salmonella Typhimurium. Compared with 1 min at 25°C, greater reductions of L. monocytogenes (P < 0.05) were obtained with all organic acid and hydrogen peroxide treatments after 10 min at an initial temperature of 55°C. The efficacies of household compounds against all tested pathogens decreased in the following order: 0.0314% sodium hypochlorite > 3% hydrogen peroxide > undiluted vinegar and 5% acetic acid > 5% citric acid > baking soda (50% sodium bicarbonate). The sensitivity of the tested pathogens to all tested household compounds followed the sequence of Salmonella Typhimurium > E. coli O157: H7 > L. monocytogenes.


2008 ◽  
Vol 71 (7) ◽  
pp. 1349-1356 ◽  
Author(s):  
AVIK MUKHERJEE ◽  
YOHAN YOON ◽  
KEITH E. BELK ◽  
JOHN A. SCANGA ◽  
GARY C. SMITH ◽  
...  

Internalization of Escherichia coli O157:H7 in nonintact beef products during mechanical tenderization or during injection of marination and tenderization ingredients is of concern if such products are undercooked. This study tested organic acids (0.2% citric acid and 0.3% acetic acid), potassium and calcium salts (1.8% potassium lactate, 0.63% calcium lactate, 0.86% calcium ascorbate, and 0.23% calcium chloride), and sodium chloride (2.5%) for their influence on thermal destruction of E. coli O157:H7 in ground beef serving as a model system. Ground beef batches (700 g; 5% fat) were mixed with equal volumes (22 ml) of each treatment solution or distilled water and portions (30 g) of treated ground beef were extruded in test tubes (2.5 by 10 cm). A five-strain mixture of E. coli O157:H7 (0.3 ml; 7 log CFU/g) was introduced at the center of the sample with a pipette. After overnight storage (4°C), simulating product marination, samples were heated to 60 or 65°C internal temperature, simulating rare and medium rare doneness of beef, in a circulating water bath. At 65°C, treatments with citric and acetic acid showed greater (P < 0.05) reduction (4 to 5 log CFU/g) of E. coli O157:H7 than all the other ingredients and the control (3 to 4 log CFU/g). Sodium chloride reduced weight losses (16 to 18% compared with 20 to 27% by citric or acetic acid) and resulted in a 4-log reduction in counts during cooking to 65°C. Ingredients such as citric or acetic acid may improve thermal inactivation of E. coli O157:H7 internalized in nonintact beef products, while sodium chloride may reduce cooking losses in such products.


1991 ◽  
Vol 54 (1) ◽  
pp. 15-19 ◽  
Author(s):  
POLLA S. ITA ◽  
ROBERT W. HUTKINS

To study the effect of citric, acetic, lactic, and hydrochloric acids on Listeria monocytogenes Scott A, growth, survival, and intracellular pH (pHin) values were determined during growth in a pH-controlled fermentation vessel. Under the experimental conditions, L. monocytogenes Scott A grown in tryptic soy (plus yeast extract) broth survived even when the pH was reduced to 3.5. For most acids, L. monocytogenes maintained a pH gradient (intracellular pH-external pH) of about 1.0 pH unit and a pHin near 5.0. When the citric and lactic acid-treated cells at pH values 3.5, 4.0, and 4.5 were incubated for a longer time (24 h), both the pH gradient and the pHin values decreased. Although citric and lactic acids were more effective in lowering the pHin, acetic acid had the greatest effect on cell survival. A greater than 4-log reduction in cell number occurred when L. monocytogenes was held in acetic acid-treated broth for 24 h at pH 3.5 even though the pHin was 5.0. The results suggest that inhibition of L. monocytogenes by acids is caused not by a decrease in the intracellular pH, per se, but rather by specific effects of undissociated acid species on metabolic or other physiological activities.


Sign in / Sign up

Export Citation Format

Share Document