scholarly journals Inverse cascade and magnetic vortices in kinetic Alfvén-wave turbulence

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
G. Miloshevich ◽  
D. Laveder ◽  
T. Passot ◽  
P. L. Sulem

A Hamiltonian two-field gyrofluid model for kinetic Alfvén waves (KAWs) in a magnetized electron–proton plasma, retaining ion finite-Larmor-radius corrections and parallel magnetic field fluctuations, is used to study the inverse cascades that develop when turbulence is randomly driven at sub-ion scales. In the directions perpendicular to the ambient field, the dynamics of the cascade turns out to be non-local and the ratio $\chi _f$ of the wave period to the characteristic nonlinear time at the driving scale affects some of its properties. For example, at small values of $\chi _f$ , parametric decay instability of the modes driven by the forcing can develop, enhancing for a while inverse transfers. The balanced state, obtained at early time when the two counter-propagating waves are equally driven, also becomes unstable at small $\chi _f$ , leading to an inverse cascade. For $\beta _e$ smaller than a few units, the cascade slows down when reaching the low-dispersion spectral range. For higher $\beta _e$ , the ratio of the KAW to the Alfvén frequencies displays a local minimum. At the corresponding transverse wavenumber, a condensate is formed, and the cascade towards larger scales is then inhibited. Depending on the parameters, a parallel inverse cascade can develop, enhancing the elongation of the ion-scale magnetic vortices that generically form.

2016 ◽  
Vol 82 (6) ◽  
Author(s):  
E. Tassi ◽  
P. L. Sulem ◽  
T. Passot

Reduced models are derived for a strongly magnetized collisionless plasma at scales which are large relative to the electron thermal gyroradius and in two asymptotic regimes. One corresponds to cold ions and the other to far sub-ion scales. By including the electron pressure dynamics, these models improve the Hall reduced magnetohydrodynamics (MHD) and the kinetic Alfvén wave model of Boldyrev et al. (2013 Astrophys. J., vol. 777, 2013, p. 41), respectively. We show that the two models can be obtained either within the gyrofluid formalism of Brizard (Phys. Fluids, vol. 4, 1992, pp. 1213–1228) or as suitable weakly nonlinear limits of the finite Larmor radius (FLR)–Landau fluid model of Sulem and Passot (J. Plasma Phys., vol 81, 2015, 325810103) which extends anisotropic Hall MHD by retaining low-frequency kinetic effects. It is noticeable that, at the far sub-ion scales, the simplifications originating from the gyroaveraging operators in the gyrofluid formalism and leading to subdominant ion velocity and temperature fluctuations, correspond, at the level of the FLR–Landau fluid, to cancellation between hydrodynamic contributions and ion finite Larmor radius corrections. Energy conservation properties of the models are discussed and an explicit example of a closure relation leading to a model with a Hamiltonian structure is provided.


1985 ◽  
Vol 107 ◽  
pp. 381-389
Author(s):  
Akira Hasegawa

Mechanisms of Alfvén wave heating in space-astrophysical plasmas are presented with particular emphasis on the parallel electric field generated in the magnetohydrodynamic perturbations due to the finite Larmor radius effects.


1982 ◽  
Vol 28 (3) ◽  
pp. 459-468 ◽  
Author(s):  
M. Khanna ◽  
R. Rajaram

It is shown that the asymptotic evolution of a finite-amplitude Alfvén wave propagating parallel to the uniform magnetic field in a warm homogeneous collisionless plasma is governed by the modified nonlinear Schrödinger equation. The dispersion is provided by the ion finite Larmor radius (FLR) effects in the momentum equation and the Hall current and electron pressure corrections to the generalized Ohm's law. In the cold plasma limit the equations reduce to those available in the literature. It is suggested that these calculations can have a bearing on the investigation of the structure of MHD waves in the solar wind.


2009 ◽  
Vol 16 (2) ◽  
pp. 275-285 ◽  
Author(s):  
D. Borgogno ◽  
P. Hellinger ◽  
T. Passot ◽  
P. L. Sulem ◽  
P. M. Trávníček

Abstract. The propagation of dispersive Alfvén waves in a low-beta collisionless plasma with a high-density channel aligned with the ambient magnetic field, is studied in three space dimensions. A fluid model retaining linear Landau damping and finite Larmor radius corrections is used, together with a hybrid particle-in-cell simulation aimed to validate the predictions of this Landau-fluid model. It is shown that when the density enhancement is moderate (depending on the pump wavelength and the plasma parameters), the wave energy concentrates into a filament whose transverse size is prescribed by the dimension of the channel. In contrast, in the case of a stronger density perturbation, the early formation of a magnetic filament is followed by the onset of thin helical ribbons and the development of strong gradients. This "dispersive phase mixing" provides a mechanism permitting dissipation processes (not included in the present model) to act and heat the plasma.


2019 ◽  
Vol 85 (03) ◽  
Author(s):  
T. Passot ◽  
P. L. Sulem

A two-field Hamiltonian gyrofluid model for kinetic Alfvén waves retaining ion finite Larmor radius corrections, parallel magnetic field fluctuations and electron inertia, is used to study turbulent cascades from the magnetohydrodynamic (MHD) to the sub-ion scales. Special attention is paid to the case of imbalance between waves propagating along or opposite to the ambient magnetic field. For weak turbulence in the absence of electron inertia, kinetic equations for the spectral density of the conserved quantities (total energy and generalized cross-helicity) are obtained. They provide a global description, matching between the regimes of reduced MHD at large scales and electron reduced MHD at small scales, previously considered in the literature. In the limit of ultra-local interactions, Leith-type nonlinear diffusion equations in the Fourier space are derived and heuristically extended to the strong turbulence regime by modifying the transfer time appropriately. Relations with existing phenomenological models for imbalanced MHD and balanced sub-ion turbulence are discussed. It turns out that in the presence of dispersive effects, the dynamics is sensitive on the way turbulence is maintained in a steady state. Furthermore, the total energy spectrum at sub-ion scales becomes steeper as the generalized cross-helicity flux is increased.


1990 ◽  
Vol 44 (3) ◽  
pp. 507-516 ◽  
Author(s):  
Hans O. Åkerstedt

Kinetic effects such as those of finite Larmor radius (FLR) and. wave–particle resonances on the ideal Alfvén-wave continuum in a z-pinch geometry are investigated. The effect of FLR increases the order of the equations and is therefore treated as a singular perturbation. Similar eigenvalue curves are found as for the case when the non-ideal effect is resistivity, with a bifurcation of a global-mode branch into a boundary-mode branch and an internal-mode branch.


1978 ◽  
Vol 20 (1) ◽  
pp. 137-148 ◽  
Author(s):  
B. I. Meerson ◽  
A. B. Mikhallovskii ◽  
O. A. Pokhotelov

Resonant excitation of Alfvén waves by fast particles in a finite pressure plasma in a non-uniform magnetic field is studied. Plasma compressibility in the wave field is determined both by the curvature of the magnetic lines of force and finite Larmor radius of fast particles. A general expression for the instability growth rate is obtained and analyzed; the applicability of the results obtained in the previous paper has also been studied. The finite pressure stabilization of the trapped particles instability has been found. The bounce-resonance effects are analyzed.


Sign in / Sign up

Export Citation Format

Share Document